• 제목/요약/키워드: Non-resonance Vibration

검색결과 94건 처리시간 0.024초

정사각형 외팔보에서의 일대일 공진 (One to One Resonance on the Quadrangle Cantilever Beam)

  • 김명구;박철희;조종두
    • 한국소음진동공학회논문집
    • /
    • 제15권7호
    • /
    • pp.851-858
    • /
    • 2005
  • The response characteristics of one to one resonance on the quadrangle cantilever beam in which basic harmonic excitations are applied by nonlinear coupled differential-integral equations are studied. This equations have 3-dimensional non-linearity of nonlinear inertia and nonlinear curvature. Galerkin and multi scale methods are used for theoretical approach to one-to-one internal resonance. Nonlinear response characteristics of 1st, 2nd, 3rd modes are measured from the experiment for basic harmonic excitation. From the experimental result, geometrical terms of non-linearity display light spring effect and these terms play an important role in the response characteristics of low frequency modes. Nonlinear nitration in the out of plane are also studied.

3차원 PIV를 활용한 초음파 진동에 의해 발생된 음향 유동을 이용한 스마트 냉각법 연구 (Study on Smart Cooling Technology by Acoustic Streaming Generated by Ultrasonic Vibration Using 3D PIV)

  • 이동렬;노병국;권기정
    • 한국소음진동공학회논문집
    • /
    • 제20권11호
    • /
    • pp.1078-1088
    • /
    • 2010
  • In order to analyze the quantitative characteristics of acoustic streaming, experimental setup of 3-D stereoscopic PIV(particle imaging velocimetry) was designed and quantitative ultrasonic flow fields in the gap between the ultrasonic vibrator and heat source were measured. Utilizing acoustic streaming induced by ultrasonic vibration, surface temperature drop of cooling object was also measured. The study on smart cooling method by acoustic streaming induced by ultrasonic vibration was performed due to the empirical relations of flow pattern, average flow velocity, different gaps, and enhancement on cooling rates in the gap. Average velocity fields and maximum acoustic streaming velocity in the open gap between the stationary cylindrical heat source and ultrasonic vibrator were experimentally measured at no vibration, resonance, and non-resonance. It was clearly observed that the enhancement of cooling rates existed owing to the acoustic air flow in the gap at resonance and non-resonance induced by ultrasonic vibration. The ultrasonic wave propagating into air in the gap creates steady-state secondary eddy called acoustic streaming which enhances heat transfer from the heat source to encompassing air. The intensity of the acoustic streaming induced by ultrasonic vibration experimentally depended upon the gap between the heat source and ultrasonic vibrator. The ultrasonic vibration at resonance caused the increase of the acoustic streaming velocity and convective heat transfer augmentation when the flow fields by 3D stereoscopic PIV and temperature drop of the heat source were measured experimentally. The acoustic streaming velocity of air enhancement on cooling rates in the gap is maximal when the gap agrees with the multiples of half wavelength of the ultrasonic wave, which is specifically 12 mm.

사각형 외팔보에서의 일대일 공진 (One to one Resonance on the Rectangular Cantilever Beam)

  • 김명구;박철희;조종두;이흥식
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.424-429
    • /
    • 2005
  • In this paper, the response characteristics of one to one resonance on the rectangular cantilever beam in which basic harmonic excitations are applied by nonlinear coupled differential integral equations are studied. This equations have 3-dimensional non-linearity of nonlinear inertia and nonlinear curvature. Galerkin and multi scale methods are used for theoretical approach to one to one internal resonance. Nonlinear response characteristics of 1st, 2nd, 3rd modes are measured from the experiment for basic harmonic excitation. From the experimental result, geometrical terms of nonlinearity display light spring effect and these terms play an important role in the response characteristics of low frequency modes. Dynamic behaviors in the out of plane are also studied.

  • PDF

축으로 고정된 승용차용 레디얼 타이어의 3차원 진동특성 (3-D Vibration Characteristics of Radial Tire for Passenger Car under Fixed Axle)

  • 김용우;남진영
    • 한국소음진동공학회논문집
    • /
    • 제12권3호
    • /
    • pp.228-235
    • /
    • 2002
  • Two kinds of experimental modal analyses have been performed on a radial tire for passenger car under fixed axle. One is the modal analysis to obtain three-dimensional modes of tire using accelerometers and the other is the one to identify cavity resonance frequency using a pressure sensor. From the first analysis, we have obtained three-dimensional natural modes and their decomposed 3-D modes in each direction, which make it possible to grasp the features of the modes that cannot be identified in the conventional 2-D modes and to classify the vibrationall modes into symmetric, non-symmetric, and antisymmetric modes in a simple way by using the experimental results. From the second experimental analysis, the cavity resonance frequency is found. Coomparing the results of the two analyses, we have Identified the three-dimensional mode of the cavity resonance. We also haute shown that natural frequencies of structural vibration depends on inflation Pressure while the cavity resonance does not.

Non-stationary vibration and super-harmonic resonances of nonlinear viscoelastic nano-resonators

  • Ajri, Masoud;Rastgoo, Abbas;Fakhrabadi, Mir Masoud Seyyed
    • Structural Engineering and Mechanics
    • /
    • 제70권5호
    • /
    • pp.623-637
    • /
    • 2019
  • This paper analyzes the non-stationary vibration and super-harmonic resonances in nonlinear dynamic motion of viscoelastic nano-resonators. For this purpose, a new coupled size-dependent model is developed for a plate-shape nano-resonator made of nonlinear viscoelastic material based on modified coupled stress theory. The virtual work induced by viscous forces obtained in the framework of the Leaderman integral for the size-independent and size-dependent stress tensors. With incorporating the size-dependent potential energy, kinetic energy, and an external excitation force work based on Hamilton's principle, the viscous work equation is balanced. The resulting size-dependent viscoelastically coupled equations are solved using the expansion theory, Galerkin method and the fourth-order Runge-Kutta technique. The Hilbert-Huang transform is performed to examine the effects of the viscoelastic parameter and initial excitation values on the nanosystem free vibration. Furthermore, the secondary resonance due to the super-harmonic motions are examined in the form of frequency response, force response, Poincare map, phase portrait and fast Fourier transforms. The results show that the vibration of viscoelastic nanosystem is non-stationary at higher excitation values unlike the elastic ones. In addition, ignoring the small-size effects shifts the secondary resonance, significantly.

PIV를 이용한 초음파 진동에 의해 유도된 음향유동의 가시화 (Flow Visualization of Acoustic Streaming Induced by Ultrasonic Vibration Using Particle Imaging Velocimetry)

  • 노병국;권기정;이장연;이동렬
    • 한국소음진동공학회논문집
    • /
    • 제14권6호
    • /
    • pp.528-535
    • /
    • 2004
  • Ultrasonic Vibrator is designed to achieve the maximum vibration amplitude at 30 kHz by in-cluding a horn (diameter, 40 mm), mechanical vibration amplifier at the top of the ultrasonic vibrator in the system and making the complete system resonate. In addition, it is experimentally visualized by particle imaging velocimetry (PIV) that the acoustic streaming velocity in the gap is at maximum when the gap between the ultrasonic vibrator and stationary plate agrees with the multiples of half-wavelength of the ultrasonic wave. This fact results from the resonance of the sound wave and the theoretical analysis of that is also accomplished and verified by experiment. It is observed that the magnitude of the acoustic streaming dependent upon the gap between the ultrasonic vibrator and stationary plate possibly changes due to the measurement of the average velocity fields of the acoustic streaming induced by the ultrasonic vibration at resonance and non-resonance. There exists extremely small average velocity at non-resonant gaps while the relatively large average velocity exists at resonant gaps compared with non-resonant gaps. It also reveals that there should be larger axial turbulent intensity at the hub region of the vibrator and at the edge of it in the resonant gap where the air streaming velocity is maximized and the flow phenomena is conspicuous than that at the other region. Because the variation of the acoustic streaming velocity at resonant gap is more distinctive than that at non-resonant gap, shear stress increases more in the resonant gap and is also maximized at the center region of the vibrator except the local position of center (r〓0). At the non-resonant gap there should be low values of vorticity distribution, but in contrast to the non-resonant gap, high and negative values of it exist at the center region of the vibrator with respect to the radial direction and in the vicinity of the middle region with respect to the axial direction. Acoustic streaming is noise-free due to the ultrasonic vibration and maintenance-free because of the absence of moving parts. Moreover, the proposed method by acoustic streaming can be utilized to the nano and micro-electro mechanical systems as a driving mechanism in addition to the augmentation of the streaming velocity.

원형 외팔보의 일대일 공진에서의 비평면 비선형 진동현상 (Non-Planar Non-Linear Vibration Phenomenon on the One to One Resonance of the Circular Cantilever Beam)

  • 박철희;조종두;김명구
    • 대한기계학회논문집A
    • /
    • 제30권2호
    • /
    • pp.171-178
    • /
    • 2006
  • Experimental and theoretical study of the non-planar response motions of a circular cantilever beam subject to base harmonic excitation has been presented in this paper work. Theoretical research is conducted using two non-linear coupled integral-differential equations of motion. These equations contain cubic linearities due do curvature term and inertial term. A combination of the Galerkin procedure and the method of multiple scales are used to construct a first-order uniform expansion for the case of one-to-one resonance. The results show that the non-linear geometric terms are very important for the low-frequency modes of the first and second mode. The non-linear inertia terms are also important for the high-frequency modes. We present the quantitative and qualitative results for non-planar motions of the dynamic behavior.

해상 근무 승무원의 수학적 전신진동 해석 모델에 관한 연구 (A Study of Mathematical Human Modeling of Sitting Crew during Whole-body Vibration)

  • 김희석;김홍태;박진형
    • 대한인간공학회지
    • /
    • 제22권1호
    • /
    • pp.1-15
    • /
    • 2003
  • The resonance behaviour needs be understood to identify the mechanisms responsible for the dynamic characteristics of human body, to allow for the non-linearity when predicting the influence of seating dynamics, and to predict the adverse effects caused by various magnitudes of vibration. However, there are currently no known studies on the effect of vibration magnitude on the transmissibility to thoracic or lumbar spine of the seated person, despite low back pain(LBP) being the most common ailment associated with whole-body vibration. The objective of this paper is to develop a proper mathematical human model for LBP and musculoskeletal injury of the crew in a maritime vehicle. In this study, 7 degree-of-freedom including 2 non-rigid mass representing wobbling visceral and intestine mass, is proposed. Also, when compared with previously published experimental results, the model response was found to be well-matching. When exposed to various of vertical vibration, the human model shows appreciable non-linearity in its biodynamic responses. The relationships of resonance for LBP and musculoskeletal injury during whole-body vibration are also explained.

Time Average ESPI와 Euler-Bernoulli 방정식에 의한 탄성계수 측정 (Determination of Elastic Modulus by Time Average ESPI and Euler-Bernoulli Equation)

  • 김경석;이항서;강영준;강기수
    • 한국정밀공학회지
    • /
    • 제24권7호
    • /
    • pp.69-74
    • /
    • 2007
  • The paper proposes a new sonic resonance test for a elastic modulus measurement which is based on time-average electronic speckle pattern interferometry(TA-ESPI) and Euler-Bernoulli equation. Previous measurement technique of elastic constant has the limitation of application for thin film or polymer material because contact to specimen affects the result. TA-ESPI has been developed as a non-contact optical measurement technique which can visualize resonance vibration mode shapes with whole-field. The maximum vibration amplitude at each vibration mode shape is a clue to find the resonance frequencies. The dynamic elastic constant of test material can be easily estimated from Euler-Bernoulli equation using the measured resonance frequencies. The proposed technique is able to give high accurate elastic modulus of materials through a simple experiment set up and analysis.