• Title/Summary/Keyword: Non-polar plane

Search Result 23, Processing Time 0.025 seconds

Non-polar and Semi-polar InGaN LED Growth on Sapphire Substrate

  • Nam, Ok-Hyeon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.51-51
    • /
    • 2010
  • Group III-nitride semiconductors have been widely studied as the materials for growth of light emitting devices. Currently, GaN devices are predominantly grown in the (0001) c-plane orientation. However, in case of using polar substrate, an important physical problem of nitride semiconductors with the wurtzite crystal structure is their spontaneous electrical polarization. An alternative method of reducing polarization effects is to grow on non-polar planes or semi-polar planes. However, non-polar and semipolar GaN grown onto r-plane and m-plane sapphire, respectively, basically have numerous defects density compared with c-plane GaN. The purpose of our work is to reduce these defects in non-polar and semi-polar GaN and to fabricate high efficiency LED on non/semi-polar substrate. Non-polar and semi-polar GaN layers were grown onto patterned sapphire substrates (PSS) and nano-porous GaN/sapphire substrates, respectively. Using PSS with the hemispherical patterns, we could achieve high luminous intensity. In case of semi-polar GaN, photo-enhanced electrochemical etching (PEC) was applied to make porous GaN substrates, and semi-polar GaN was grown onto nano-porous substrates. Our results showed the improvement of device characteristics as well as micro-structural and optical properties of non-polar and semi-polar GaN. Patterning and nano-porous etching technologies will be promising for the fabrication of high efficiency non-polar and semi-polar InGaN LED on sapphire substrate.

  • PDF

Growth of Non-Polar a-plane ZnO Layer On R-plane (1-102) Sapphire Substrate by Hydrothermal Synthesis (저온 수열 합성법에 의해 (1-102) 사파이어 기판상에 성장된 무분극 ZnO Layer 에 관한 연구)

  • Jang, Jooil;Oh, Tae-Seong;Ha, Jun-Seok
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.4
    • /
    • pp.45-49
    • /
    • 2014
  • In this study, we grew non-polar ZnO nanostructure on (1-102) R-plane sapphire substrates. As for growth method of ZnO, we used hydrothermal synthesis which is known to have the advantages of low cost and easy process. For growth of non-polar, the deposited AZO seed buffer layer with of 80 nm on R-plane sapphire by radio frequency magnetron sputter was annealed by RTA(rapid thermal annealing) in the argon atmosphere. After that, we grew ZnO nanostructure on AZO seed layer by the added hexamethylenetramine (HMT) solution and sodium citrate at $90^{\circ}C$. With two types of additives into solution, we investigated the structures and shapes of ZnO nanorods. Also, we investigate the possibility of formation of 2D non-polar ZnO layer by changing the ratio of two additives. As a result, we could get the non-polar A-plane ZnO layer with well optimized additives' concentrations.

Characterization of Non-polar 6H-SiC Substrates for Optoelectronic Device Applications (광전소자 응용을 위한 무극성 6H-SiC 기판의 특성)

  • Yeo, Im-Gyu;Lee, Tae-Woo;Choi, Jung-Woo;Seo, Jung-Doo;Ku, Kap-Ryeol;Lee, Won-Jae;Shin, Byung-Chul;Kim, Young-Hee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.5
    • /
    • pp.390-396
    • /
    • 2009
  • The present research was focused to investigate the quality of non-polar SiC substrates grown by a conventional PVT method for optoelectronic applications. The half part of the PVT-grown 6H-SiC crystal boules was sliced along a-direction and m-direction to extensively analyze non-polar planes and then remaining part of that was sliced along the basal plane to produce wafers. The non-polar SiC m-plane and a-plane exhibited apparent peaks around 2 theta=$120^{\circ}$((3-300) plane) and 2 theta=$60^{\circ}$ ((11-20) plane), respectively. FWHM values of m-plane measured along a-direction and c-direction were 60 arc see and 57 arcsec respectively, a-plane measured along m-direction and c-direction were 41 arcsec and 51 arcsec respectively. The typical absorption spectra of SiC crystals indicated that each of SiC crystals were the 6H-SiC with fundamental absorption energy of about 3.04 eV. Non-polar planes contained no micropipe on etched surface. The carrier concentration and mobility of non-polar SiC wafers have estimated by Raman spectrum. It was observed that the carrier mobility is low in the area far from seed crystal with compared to other places.

Effects on Optical Characteristics of GaN Polarity Controlled by Substrate

  • Kang, Sang-Won;Shim, Hyun-Wook;Lee, Dong-Yul;Han, Sang-Heon;Kim, Dong-Joon;Kim, Je-Won;Oh, Bang-Won;Kryliouk, Olga;Anderson, Timothy J.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.6 no.2
    • /
    • pp.79-86
    • /
    • 2006
  • N-polar, Ga-polar, and non-polar GaN was grown by MBE and MOVPE using various substrates and influence of polarity has been investigated. The GaN growth by MOVPE is along cplane (0001), c-plane (0001), and a-plane (11-20) direction on c-plane (0001), a-plane (11-20) and r-plane (1-102) sapphire substrate respectively. The polarity of the film has a strong influence on the morphology and the optical properties of PA-MBE grown As-doped GaN layers. Strong blue emission from As-doped GaN was observed only in the case of N-polarity (000-1) layers, which was attributed to the highest concentration of Ga dangling bonds for this polarity of a GaN surface.

Effect of Basal-plane Stacking Faults on X-ray Diffraction of Non-polar (1120) a-plane GaN Films Grown on (1102) r-plane Sapphire Substrates

  • Kim, Ji Hoon;Hwang, Sung-Min;Baik, Kwang Hyeon;Park, Jung Ho
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.5
    • /
    • pp.557-565
    • /
    • 2014
  • We report the effect of basal-plane stacking faults (BSFs) on X-ray diffraction (XRD) of non-polar (11$\underline{2}$0) a-plane GaN films with different $SiN_x$ interlayers. Complete $SiN_x$ coverage and increased three-dimensional (3D) to two-dimensional (2D) transition stages substantially reduce BSF density. It was revealed that the Si-doping profile in the Si-doped GaN layer was unaffected by the introduction of a $SiN_x$ interlayer. The smallest in-plane anisotropy of the (11$\underline{2}$0) XRD ${\omega}$-scan widths was found in the sample with multiple $SiN_x$ layers, and this finding can be attributed to the relatively isotropic GaN mosaic resulting from the increase in the 3D-2D growth step. Williamson-Hall (WH) analysis of the (h0$\underline{h}$0) series of diffractions was employed to determine the c-axis lateral coherence length (LCL) and to estimate the mosaic tilt. The c-axis LCLs obtained from WH analyses of the present study's representative a-plane GaN samples were well correlated with the BSF-related results from both the off-axis XRD ${\omega}$-scan and transmission electron microscopy (TEM). Based on WH and TEM analyses, the trends in BSF densities were very similar, even though the BSF densities extracted from LCLs indicated that the values were reduced by a factor of about twenty.

A Study About Electrical Properties and Fabrication Schottky Barrirer Diode Prepared on Polar/Non-Polar of 6H-SiC (극성/무극성 6H-SiC 쇼트키 베리어 다이오드 제조 및 전기적 특성 연구)

  • Kim, Kyung-Min;Park, Sung-Hyun;Lee, Won-Jae;Shin, Byoung-Chul
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.8
    • /
    • pp.587-592
    • /
    • 2010
  • We have fabricated schottky barrier diode (SBDs) using polar (c-plane) and non polar (a-, m-plane) n-type 6H-SiC wafers. Ni/SiC ohmic contact was accomplished on the backside of the SiC wafers by thermal evaporation and annealed for 20minutes at $950^{\circ}C$ in mixture gas ($N_2$ 90% + $H_2$ balanced). The specific contact resistance was $3.6{\times}10^{-4}{\Omega}cm^2$ after annealing at $950^{\circ}C$. The XRD results of the alloyed contact layer show that formation of $NiSi_2$ layer might be responsible for the ohmic contact. The active rectifying electrode was formed by the same thermal evaporation of Ni thin film on topside of the SiC wafers and annealed for 5 minutes at $500^{\circ}C$ in mixture gas ($N_2$ 90% + $H_2$ balanced). The electrical properties of SBDs have been characterized by means of I-V and C-V curves. The forward voltage drop is about 0.95 V, 0.8 V and 0.8 V for c-, a- and m-plane SiC SBDs respectively. The ideality factor (${\eta}$) of all SBDs have been calculated from log(I)-V plot. The values of ideality factor were 1.46, 1.46 and 1.61 for c-, a- and m-plane SiC SBDs, respectively. The schottky barrier height (SBH) of all SBDs have been calculated from C-V curve. The values of SBH were 1.37 eV, 1.09 eV and 1.02 eV for c-, a- and m-plane SiC SBDs, respectively.

Structural characterization of nonpolar GaN using high-resolution transmission electron microscopy (HRTEM을 이용한 비극성 GaN의 구조적 특성 분석)

  • Kong, Bo-Hyun;Kim, Dong-Chan;Kim, Young-Yi;Ahn, Cheol-Hyoun;Han, Won-Suk;Choi, Mi-Kyung;Bae, Young-Sook;Woo, Chang-Ho;Cho, Hyung-Koun;Moon, Jin-Young;Lee, Ho-Seong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.23-23
    • /
    • 2009
  • GaN-based nitride semiconductors have attracted considerable attention in high-brightness light-emitting-diodes (LEDs) and laser diodes (LDs) covering from green to ultraviolet spectral range. LED and LD heterostructures are usually grown on (0001)-$Al_2O_3$. The large lattice mismatch between $Al_2O_3$ substrates and the GaN layers leads to a high density of defects(dislocations and stacking faults). Moreover, Ga and N atoms are arranged along the polar [0001] crystallographic direction, which leads to spontaneous polarization. In addition, in the InGaN/GaN MQWs heterostructures, stress applied along the same axis can also give rise to piezoelectric polarization. The total polarization, which is the sum of spontaneous and piezoelectric polarizations, is aligned along the [0001] direction of the wurtzite heterostructures. The change in the total polarization across the heterolayers results in high interface charge densities and spatial separation of the electron and hole wave functions, redshifting the photoluminescence peak and decreasing the peak intensity. The effect of polarization charges in the GaN-based heterostructures can be eliminated by growing along the non-polar [$11\bar{2}0$] (a-axis) or [$1\bar{1}00$] (m-axis) orientation instead of thecommonly used polar [0001] (c-axis). For non-polar GaN growth on non-polar substrates, the GaN films have high density of planar defects (basal stacking fault BSFs, prismatic stacking fault PSFs), because the SFs are formed on the basal plane (c-plane) due to their low formation energy. A significant reduction in defect density was recently achieved by applying blocking layer such as SiN, AlN, and AlGaN in non-polar GaN. In this work, we were performed systematic studies of the defects in the nonpolar GaN by conventional and high-resolution transmission electron microscopy.

  • PDF