• 제목/요약/키워드: Non-point source pollution management

검색결과 185건 처리시간 0.034초

수질오염총량관리제의 합리적인 시행을 위한 비점오염원관리 개선방안 - 비점오염원 관리지역 선정 및 비점오염물질 관리를 중심으로 - (Improvement on Management of Non-point Source Pollution for Reasonable Implementation of TMDL - Focusing on Selection of Non-point Source Pollution Management Region and Management of Non-point Source Pollutant -)

  • 이상진;김영일
    • 대한환경공학회지
    • /
    • 제36권10호
    • /
    • pp.719-723
    • /
    • 2014
  • 수질오염총량관리제의 효율적인 시행을 위해 본 연구에서는 비점오염원의 분류, 비점부하량(발생, 배출) 산정, 비점 오염원 관리지역의 선정, 비점오염물질 관리 등을 포함한 비점오염원 관리방안을 제시하고자 하였다. 무엇보다도 먼저 점오염원과 비점오염원의 정의는 학술적 법률적 관점에 기초하여 명확히 구분 관리하여야 한다. 특히, 사업활동과 사람의 활동에 의해서도 환경피해가 발생하지 않는 임야, 초지, 하천 등은 별도로 자연배경오염원으로 구분하여야 한다. 비점오염원 발생 및 배출부하량의 원단위는 유역의 실제여건에 맞도록 우선적으로 변경하여야 하며, 비점오염원 발생 및 배출부하량의 산정방법은 유역의 강수량 및 강수 지속시간을 고려하도록 수정하여야 한다. 한편, 수질오염총량관리제를 시행함에 있어 비점 오염원 관리지역은 강우시 하천의 오염물질 농도가 중권역 목표(관리목표)를 초과하거나 초과할 우려가 있는 유역을 대상으로 하며, 전체 유역 가운데 초지, 임야를 제외한 도시지역, 농경지, 그리고 대지 가운데 비점오염물질의 배출밀도가 높은 지역을 비점오염원 관리지역으로 최소화하여 선정하여야 한다. 비점오염물질저감시설은 단위면적당 비점오염물질 배출량, 오염물질 초과농도 지속시간, 처리의 실현가능성, 점오염원 대비 처리비용 효과 등을 고려하여 단위면적당 비점오염원 발생부 하량이 많은 지역과 강우시 수질농도가 중권역 목표를 초과하는 유역에 설치하여야 한다.

비점오염원 관리지역의 선정 기법에 관한 연구 (A Study for the Selection Method of Control Area of Nonpoint Pollution Source)

  • 박상현;정우혁;이상진;임봉수
    • 한국물환경학회지
    • /
    • 제26권5호
    • /
    • pp.761-767
    • /
    • 2010
  • This study introduces a model of territorial analysis on Chungcheongnam-do Nonsan-chun valley area, which gives an example of a method of selecting the management area for non-point pollution source from land use to help eliminate its source. High discharge load per unit area signify high level of land ratio with high level of basic unit of development load (including factory sites, school sites, roadways), which mean that there are a significant level of urbanization. It is these areas with the examination of the water quality of the nearby river that should be considered as the management area for non-point pollution source. Thus, the management area for non-point pollution source should be sought in areas with high discharge load per unit area and high density of water pollution area. When level of drainage is high the pollution density level is relatively lower, and when the level of drainage is low the density level is relatively higher. The level of pollution from non-point pollution source is much lower with more water flowing through. The possible non-point pollution source areas that were selected with these standards were then examined with the distance from the river, the slope angle, land usage, elevation, BOD discharge density load, T-N discharge density load, T-P discharge density load, and were given a level one through five. Out of the possible areas Nonsan-si Yeonmu-eup Anshim-li was the densest area, and it was given level one. The level one area should be examined further with the field analysis to be selected as the actual management area for non-point pollution source.

코이어블록(Coir-Blocks)을 이용한 절토사면의 경관개선 및 비점오염원 관리에 관한 연구 (A Study on Landscape Improvement of Cut-Slopes and Management of Non-Point Pollution Using Coir-Blocks)

  • 이관준;박율진
    • 한국환경복원기술학회지
    • /
    • 제18권5호
    • /
    • pp.27-36
    • /
    • 2015
  • This study was conducted to grasp the effect of afforestation of cut slope using coir blocks on the improvement of scenery and the management of non point pollution source. Total four experimental tanks such as general soil slope, coir blocks, installation slope, slope refilling the inside of coir blocks slope with pebble, slope refilling the inside of coir blocks with soil and plant were installed, pollution source water was supplied and the possibility of reduction management of non point pollution source was analyzed at four items of COD, SS, T-N, T-P and main results drawn from this study are as follows. In conclusion, biodegradable materials like coir blocks and soil and plant layers are judged to be helpful in reduction management of non point pollution source inflowing to water space from land area. Thus, the reduction of non point pollution source occurring at land area is thought to be fully controlled at the cut slope, the space prior to inflowing to water ecological space like a stream or a swamp area.

유역의 토지이용 특성을 고려한 비점오염원 관리방안 적용에 따른 저감 효율 분석 (Analysis of the Efficiency of Non-point Source Pollution Managements Considering the Land Use Characteristics of Watersheds)

  • 최유진;이서로;금동혁;한정호;박운지;김종건;임경재
    • 한국물환경학회지
    • /
    • 제36권5호
    • /
    • pp.405-422
    • /
    • 2020
  • Land use change by urbanization has significantly affected the hydrological process including the runoff characteristics. Due to this situation, it has been becoming more complicated to manage non-point source pollutions caused by rainfall. In order to effectively control non-point sources, it is necessary to identify the reduction efficiency of the various management method based on land use characteristics. Thus, the purpose of this study is to analyze the reduction efficiency of non-point source pollution management practices targeting three different watersheds with the different land use characteristics using the Soil and Water Assessment Tool (SWAT). To do this, the vulnerable subwatersheds to non-point source pollution occurrence within each watershed were selected based on the streamflow and water quality simulation results. Then, considering the land use, low impact development (LID) or best management practices (BMPs) were applied to the selected subwatersheds and the efficiency of each management was analyzed. As a result of analysis of the non-point source pollution reduction efficiency, when LID was applied to urban areas, the average reduction efficiencies of SS, NO3-N, and TP were 5.92%, 4.62%, and 10.35%, respectively. When BMPs were applied to rural areas, the average reduction efficiencies of SS, TN and TP were 35.45%, 4.37%, and 10.16%, respectively. The results of this study can be used as a reference for determining appropriate management methods for non-point source pollution in urban, rural, and complex watersheds.

청양-홍성간 도로에서의 강우 시 비점오염 유출특성 및 오염부하량 분석 (Runoff Characteristics and Non-point Source Pollution Loads from Cheongyang-Hongseong Road)

  • 이춘원;강선홍;안태웅;양주경
    • 상하수도학회지
    • /
    • 제25권2호
    • /
    • pp.265-274
    • /
    • 2011
  • Nowadays, the importance of non-point source pollution treatment is being emphasized. Especially, the easy runoff characteristic of highly concentrated pollutants in the roads makes the circumstance more complicated due to impermeability of roads. When the pollutants flow into steam it could make water quality in stream worse and it also causes a bad influence in the aquatic ecosystem because the effluents of rainfall-runoff may contain indecomposable materials like oil and heavy metals. Therefore, we tried to figure out the property of non-point source pollution when it is raining and carried out an assessment for the property of runoff for non-point source pollution and EMC (Event Mean Concentrations) of the essential pollutants during this study. As the result of the study, the EMC was BOD 5.2~21.7 mg/L, COD 7.5~35.4 mg/L, TSS 71.5~466.1 mg/L, T-N 0.682~1.789 mg/L and T-P 0.174~0.378 mg/L, respectively. The decreasing rate of non-point pollutant in Chungyang-Hongsung road indicates the maximum decrease of 80% until 5 mm of rainfall based on SS concentration; by the rainy time within 20~30 minutes, the decreasing rate of SS concentration was shown as 88.0~97.6%. Therefore it was concluded that it seems to be possibly control non-point pollutants if we install equipments to treat non-point pollutants with holding capacity of 30 min. It is supposed that the result of this study could be used for non-point pollutants treatment of roads in Chungyang-Hongsung area. We also want to systematically study and consistently prepare the efficient management of runoff from non-point source pollution and pollutant loading because the characteristics of non-point source pollution runoff changes depending on different characteristics and situations of roads and rainfall.

자연기반해법 적용에 따른 강원도 양구군 해안면의 비점오염 저감 효과 추정 (Estimation of non-point pollution reduction effect of Haean Catchment by application of Nature-based Solutions)

  • 이지우;박찬
    • 한국환경복원기술학회지
    • /
    • 제25권3호
    • /
    • pp.47-62
    • /
    • 2022
  • The Ministry of Environment has been working to reduce the impact on biodiversity, ecosystems, and social costs caused by soil runoff from highland Agricultural fields by setting up non-point pollution source management districts. To reduce soil loss, runoff path reduction technology has been applied, but it has been less cost effective. In addition, non-point pollution sources cause environmental conflicts in downstream areas, and recently highland Agricultural fields are becoming vulnerable to climate change. The Ministry of Environment is promoting the optimal management plan in earnest to convert arable land into forests and grasslands, but since non-point pollution is not a simple environmental problem, it is necessary to approach it from the aspect of NbS(Nature-Based Solution). In this study, a scenario for applying the nature-based solution was established for three subwatersheds west of Haean-myeon, Yanggu-gun, Gangwon-do. The soil loss distribution was spatialized through GeoWEPP and the amount of soil loss was compared for the non-point pollution reduction effect of mixed forests and grasslands. When cultivated land with a slope of 20% or more and ginseng fields were restored to perennial grasslands and mixed forests, non-point pollution reduction effects of about 32% and 29.000 tons compared to the current land use were shown. Also, it was confirmed that mixed forest rather than perennial grassland is an effective nature-based solution to reduce non-point pollution.

Analysis to Select Filter Media and The Treatment Effect of Non-point Pollution Source in Road Runoff

  • Lee, Tae Goo;Han, Young Hae
    • KIEAE Journal
    • /
    • 제14권3호
    • /
    • pp.55-63
    • /
    • 2014
  • This study selected and analyzed filter media that can be applied in non-point pollution reduction devices aimed at processing the source of pollution on site for road runoff that increases rapidly in rainfall-runoff in order to improve the water quality of urban areas. First, the factors that affect the quality of runoff caused by sources of non-point pollution include physical and social factors such as the usage of land around the area of water collection, type of pavement and movement of cars and people, as well as rainfall characteristics such as frequency, intensity, amount and duration of rainfall. Second, the purification tests of the filter media were processed for pH, BOD, COD and T-P, and the filter media showed to have initial purification effect at that items. However, the filter media showed to be very effective for the processing of SS, T-N, Zn and Cd from the beginning to the end. Third, for filter media, zeolite and vermiculite showed to be effective for processing SS, T-N, Zn and CD constantly, and composite filter media including zeolite showed to have strong processing effects. The authors conclude that this study can be applied to technical areas and policies aimed at reducing non-point pollution in urban areas and can also contribute to allowing eco-friendly management of rainfall as well as improvement of water quality.

EPA-SWMM을 이용한 LID 기법의 비점오염 저감효과 분석 (Evaluation of the Effectiveness of Low Impact Development Practices in an Urban Area: Non-point Pollutant Removal Measures using EPA-SWMM)

  • 조선주;강민지;권혁;이재운;김상단
    • 한국물환경학회지
    • /
    • 제29권4호
    • /
    • pp.466-475
    • /
    • 2013
  • Non-point source pollution management is one of the most important issues in Korean water quality/watershed management. In recent years, Low Impact Development (LID) has emerged as an effective approach to control stormwater in an urban area. This study illustrates how to design and evaluate the effect of non-point pollutant management using EPA-SWMM LID module and suggests design parameters for modeling LID facilities. In addition, optimal installation locations of LID can be determined by a simple distributed hydrologic model by using SWMM for a long-term.

SWMM모델을 이용한 도시지역 비점오염원의 유출특성 연구 -전주시를 대상으로 (Study on the Runoff Characteristics of Non-point Source Pollution in Municipal Area Using SWMM Model -A Case Study in Jeonju City)

  • 백도현;임영환;최진규;정팔진;곽동희
    • 한국환경과학회지
    • /
    • 제14권12호
    • /
    • pp.1185-1194
    • /
    • 2005
  • The runoff characteristics of non-point source pollutions in the municipal area of Jeonju were investigated and analyzed by using the SWMM (Storm Water Management Model). The flow rates and water qualities of runoff from two types of drainage conduits were measured respectively. One was a conventional combined sewer system and the other was a separated sewer system constructed recently From August to November in 2004, investigations on two rainfall events were performed and flow rate, pH, BOD, COD, SS, T-N and T-P were measured. These data were also used for model calibration. On the basis of the measured data and the simulation results by SWMM, it is reported that $80-90\%$ of pollution load is discharged in the early-stage storm runoff. Therefore, initial 10-30 mm of rainfall should be controlled effectively for the optimal treatment of non-point source pollution in urban area. Also, it was shown that the SWMM model was suitable for the management of non-point source pollution in the urban area and for the analysis of runoff characteristics of pollutant loads.

Assessment of Non-Point Source Pollutant Loads and Priority Management Areas using an HSPF Model in Sejong City, South Korea

  • Lim, Dohun;Lee, Yoonjin
    • 한국환경과학회지
    • /
    • 제26권8호
    • /
    • pp.881-891
    • /
    • 2017
  • In this study, the discharge loads of non-point pollution sources were analyzed using a Hydrologic Simulation Program-Fortran (HSPF) model for 46 sub-watersheds in order to guide the management plan for water and streams passing through the city. The results using HSPF showed good applicability in comparison to point measurements, which were based on BOD, TP, and TN. The mean value of the BOD loads was $4.08kg/km^2$ per day, and the highest level of BOD was $17.75kg/km^2$ per day at Namri. Three potential areas of high priority for the installment of constructed wetlands were selected in order to reduce non-point pollution sources based on BOD loads and on environmental and economic conditions. The results for these scenarios indicated a maximum rate of reduction in BOD of 39.12% within the proposed constructed wetlands.