• 제목/요약/키워드: Non-point Source Pollutant

검색결과 249건 처리시간 0.023초

Assessment of Non-point Pollutants and Runoff Characteristics in Urban Area, Korea

  • Park, Jae-Young;Choi, I-Song;Oh, Jong-Min
    • 생태와환경
    • /
    • 제38권spc호
    • /
    • pp.67-75
    • /
    • 2005
  • The objectives of this study were to understand the runoff characteristics of the non-point sources originating from impervious surfaces and to assess their effect on the aquatic environment in the urban areas. The concentration of pollutants (SS, BOD, COD and T-P) except for T-N showed the highest value in runoff from road, and event mean concentration (EMC) also showed high value from road. The pollutants discharged from road showed a higher concentration in the beginning stage (0 ${\sim}$ 30%) of progressive percentage of rainfall. The contribution percentages of non-point sources by load were 44.9% for SS, 11.2% for BOD, 21.4% for COD, 11.4% for T-N and 8.1% for T-P in the total load of pollutant discharged through sewer. From our results, the road was a significant potential source that deteriorated water quality of the streams and lakes in the vicinity of the urban area during the rain period. Therefore, counter plan is required to reduce pollutant concentration on the road from non-point sources in the urban area. Also, since pollutant concentration in the beginning stage of rainfall was quite high, road cleaning seems to be one of the very useful methods to prevent inflowing of pollutants to the aquatic environment.

BASINS/WinHSPF를 이용한 남한강 상류 유역의 비점오염원 저감효율평가 (A Study on BASINS/WinHSPF for Evaluation of Non-point Source Reduction Efficiency in the Upstream of Nam-Han River Watershed)

  • 윤춘경;신아현;정광욱;장재호
    • 한국물환경학회지
    • /
    • 제23권6호
    • /
    • pp.951-960
    • /
    • 2007
  • Window interface to Hydrological Simulation Program-FORTRAN (WinHSPF) developed by the United States Environmental Protection Agency (EPA) was applied to the upstream of Nam-Han river watershed to examine its applicability for loading estimates in watershed scale and to evaluate non-point source control scenarios using BMPRAC in WinHSPF. The WinHSPF model was calibrated and verified for water flow using Ministry of Construction and Transportation (MOCT, 3 stations, 2003~2005) and water qualities using Ministry of Environment (MOE, 5 station, 2000~2006). Water flow and water quality simulation results were also satisfactory over the total simulation period. But outliers were occurred in the time series data of TN and TP at some regions and periods. Therefore, it required more profit calibration process for more various parameters. As a result, all the study was performed within the expectation considering the complexity of the watershed, pollutant sources and land uses intermixed in the watershed. The estimated pollutant load for annual average about $BOD_5$, T-N and T-P respectively. Nonpoint source loading had a great portion of total pollutant loading, about 86.5~95.2%. In WinHSPF, BMPRAC was applied to evaluate non-point source control scenarios (constructed wetland, wet detention ponds and infiltration basins). All the scenarios showed efficiency of non-point source removal. Overall, the HSPF model is adequate for simulating watersheds characteristics, and its application is recommended for watershed management and evaluation of best management practices.

GIS를 이용한 유역별 오염부하량 산정시스템의 개발 (Development of Pollutant Loading Estimation System using GIS)

  • 함광준;김준현;심재민
    • 환경영향평가
    • /
    • 제14권3호
    • /
    • pp.97-107
    • /
    • 2005
  • The purpose of this study is to develop a system, which estimates watershed pollutant loading rate through the combination of GIS and computational mode. Also, the applicability of this study was estimated by the application of the above system for Chuncheon City. The detailed results of these studies are as follows; The pollutant loading estimation system was developed for more convenient estimation of pollutant loading rate in watershed, and the system load was minimized by the separation of estimation module for point and non-point source. This system on the basis of GIS is very economical and efficient because it can be applied to other watershed with the watershed map. System modification is not needed. The pollutant loading estimation system for point source was developed to estimate the pollutant loading rate in watershed through the extraction of the proper data from all districts and yearly data and the execution of spatial analysis which is main function of GIS. From the verification result of spatial analysis, real watershed area and the administrative districtarea extracted by spatial analysis were $1,114,893,340.15m^2$ and $1,114,878,683.68m^2$, respectively. It shows that the spatial analysis results were very exact with only 0.001% error. The pollutant loading estimation system for non-point source was developed to calculate the pollutant loading rate through the overlaying of land-use and watershed map after the construction of new land-use map using the land register database with most exact land use classification. Application result for Chuncheon City shows that the proposed system results in one percent land use error while the statistical method results in five percent. More exact nonpoint source pollutant loading was estimated from this system.

강우시 주택 및 공단지역의 비점오염원 유출특성 (Characteristics of Non-point Source Runoff in Housing and Industrial Area during Rainfall)

  • 김강석;박종석;홍현승;이경훈
    • 한국습지학회지
    • /
    • 제14권4호
    • /
    • pp.581-589
    • /
    • 2012
  • 비점오염원은 유역 및 지역의 토지이용 형태별로 강우유출수의 유출특성이 다양하고, 강우시 지표면의 각종 오염물질들이 도시하천으로 유입되어 수질에 심각한 영향을 미치고 있다. 본 연구에서는 도시지역을 주택 및 공단구역으로 구분하여 강우유출수의 유출특성을 파악하고자 오염물질별 EMC를 산정하였다. 분석 결과 강우시 주택 및 공단지역의 비점오염원은 강우초기에 유출수의 농도가 급격히 증가한 후 서서히 감소하는 초기세척현상이 발생하였으며, 초기우수의 제어가 필요하였다. 향후 장기적인 강우사상 및 수질조사 자료의 축척, GIS를 이용한 토지이용형태, 지형 및 지질특성의 자료 축척 등 지속적인 연구가 필요할 것으로 판단된다.

고랭지밭 밀집지역 초생대의 비점오염 저감 효율 평가 - 비점오염원 관리지역을 중심으로 (만대지구, 가아지구, 자운지구) - (Efficiency Evaluation of Vegetative Filter Strip for Non-point Source Pollutant at Dense Upland Areas - Focused on Non-point Source Management Area Mandae, Gaa, and Jaun Basins -)

  • 정연지;이동준;강현우;장원석;홍지영;임경재
    • 한국농공학회논문집
    • /
    • 제64권4호
    • /
    • pp.1-10
    • /
    • 2022
  • A vegetative filter strip (VFS) is one of the best management practices (BMPs) to reduce pollutant loads. This study aims to assess the effectiveness of VFS in dense upland field areas. The study areas are agricultural fields in the Maedae (MD), Gaa (GA), and Jaun (JU) watersheds, where severe sediment yields have occurred and the Korean government has designated them as non-point management regions. The agricultural fields were divided into three or four clusters for each watershed based on their slope, slope length, and area (e.g., MD1, MD2). To assess the sediment trapping (STE) and pesticide reduction efficiency (PRE) of VFS, the Vegetative Filter Strip Modeling System (VFSMOD) was applied with three different scenarios (SC) (SC1: VFS with rye vegetation; SC2: VFS with rye vegetation and a gentle slope in VFS range; and SC3: VFS with grass mixture). For SC1, there were relatively short slope lengths and small areas in the MD1 and GA3 clusters, and they showed higher pollutant reduction (STE>50%, PRE>25%). For SC2 and SC3, all clusters in GA and some clusters (MD1 and MD3) in MD show higher pollutant reduction (>25%), while the uplands in JU still show a lower pollutant (<25%). With correlation analysis between geographic characteristics and VFS effectiveness slope and slope length showed relative higher correlations with the pollutant efficiency than a area. The results of this study implied that slope and slope length should be considered to find suitable upland conditions for VFS installations.

NON-POINT SOURCE POLLUTANT MODELING IN USING GIS ASSESSMENT IN STREAM NETWORK AND THE IRRIGATION REGION

  • Ju-Young;Kutty Arvind
    • Water Engineering Research
    • /
    • 제5권3호
    • /
    • pp.147-156
    • /
    • 2004
  • Recently, the population growth, industrial and agricultural development are rapidly undergoing in the Lower Rio Grande Valley (LRGV) in Texas. The Lower Rio Grande Valley (LRGV) composed of the 4 counties and three of them are interesting for Non-point and point source pollutant modeling: Starr, Cameron, and Hidalgo. Especially, the LRGV is an intensively irrigation region, and Texas A&M University Agriculture Program and the New Mexico State University College of Agriculture applied irrigation district program (Guy Fipps and Craig Pope, 1998), projects in GIS and Hydrology based agricultural water management systems and assessment of prioritized protecting stream network, water quality and rehabilitation based on water saving potential in Rio Grande River. In the LRGV region, where point and non-point sources of pollution may be a big concern, because increasing fertilizers and pesticides use and population cause. This project objective seeks to determine the accumulation of non-point and point source and discuss the main impacts of agriculture and environmental concern with water quality related to pesticides, fertilizer, and nutrients within LRGV region. The GIS technique is widely used and developed for the assessment of non-point source pollution in LRGV region. This project shows the losses in kg/$km^2$/year of BOD (Biological Oxygen Demand), TN (total Nitrogen) and TP (total phosphorus) in the runoff from the surface of LRGV.

  • PDF

BASINS/WinHSPF 모형을 이용한 비점오염물질 유출특성 분석과 최적관리기법 적용 (Analysis of Runoff Characteristics of Non-point Sources Pollutant and Application of BMP Using BASINS/WinHSPF Model)

  • 김민주;김태근
    • 환경영향평가
    • /
    • 제23권2호
    • /
    • pp.88-100
    • /
    • 2014
  • This study analyzed runoff characteristics of non-point sources pollutant and evaluated removal of pollution by BMP(Best Management Practice) using BASINS/WinHSPF model. Hourly meterological data including input data was provided from 2010 to 2011 year to run HSPF model in Miho stream watershed. As the results of calibration and validation of the model, the model could be successfully performed to simulate the flow and water quality parameters. The apprehensive area of non-point source pollution was chosen by non-point source pollution per area of a tributary to the Miho stream and applied constructed wetland in area chosen. Three scenarios were based on installation area of an constructed wetland and HSPF model would be applied to estimate the pollutant removals through the constructed wetland. The removal rates of pollutants through the constructed wetland were estimated with the runoff and water quality parameters by the comparisons of before and after the constructed wetland application.

유역모형을 이용한 도시지역의 불투수면 변화에 따른 오염물질 유출 해석 (Analysis of Pollutants Discharge due to the Change of Impervious Land in Urban Area Using Watershed Model)

  • 공석호;김태근
    • 환경영향평가
    • /
    • 제27권1호
    • /
    • pp.73-82
    • /
    • 2018
  • 본 연구는 무심천 유역을 대상으로 도시화에 따른 불투수 지역의 증가가 오염물질의 유출에 미치는 영향에 대하여 HSPF 모델을 이용하여 평가하였다. 모델의 보정은 2015년도 관측치, 검증은 2014년도 관측치를 기준으로 하였고, 모의항목은 유량, BOD, TP를 대상으로 하였으며, 모형의 보정 및 검증 결과는 모든 모의항목이 성공적으로 수행되었다. 무심천 유역의 2015년도 토지이용 현황을 반영하여 모형에 사용한 토지피복도를 수정한 후 개발지역의 계획 위치와 면적을 적용하여 수질을 모의하였다. 모의 결과 불투수면이 증가하면 일별 오염부하량은 강우 시에는 개발사업 전보다 증가하고, 비강우 시에는 감소하였다. 연간 오염부하량은 강우 시 증가량이 비강우 시 감소량보다 월등히 많아 BOD와 TP의 부하량은 증가하였다. 또한 비점오염부하량은 개발 전의 점오염원이 동일하고, 불투수면만 증가한다는 전제에서 모의한 결과 개발 후의 비점오염부하량이 개발 전의 총오염부하량보다 크게 산정되어 불투수면이 급증하는 유역은 계획 단계에서부터 비점오염원의 관리대책이 필요한 것으로 나타났다.

Assessment of Non-Point Source Pollutant Loads and Priority Management Areas using an HSPF Model in Sejong City, South Korea

  • Lim, Dohun;Lee, Yoonjin
    • 한국환경과학회지
    • /
    • 제26권8호
    • /
    • pp.881-891
    • /
    • 2017
  • In this study, the discharge loads of non-point pollution sources were analyzed using a Hydrologic Simulation Program-Fortran (HSPF) model for 46 sub-watersheds in order to guide the management plan for water and streams passing through the city. The results using HSPF showed good applicability in comparison to point measurements, which were based on BOD, TP, and TN. The mean value of the BOD loads was $4.08kg/km^2$ per day, and the highest level of BOD was $17.75kg/km^2$ per day at Namri. Three potential areas of high priority for the installment of constructed wetlands were selected in order to reduce non-point pollution sources based on BOD loads and on environmental and economic conditions. The results for these scenarios indicated a maximum rate of reduction in BOD of 39.12% within the proposed constructed wetlands.

분산형 빗물 저류조용 모래 여과층을 적용한 도심지 비점오염원의 TSS와 COD 정화효율에 대한 실험적 연구 (An Experimental Study on Filtration Efficiency of Sand Filter Layers to TSS and COD in Non-point Source Pollutant)

  • 안재윤;이동섭;한신인;최항석
    • 대한토목학회논문집
    • /
    • 제34권5호
    • /
    • pp.1477-1488
    • /
    • 2014
  • 도심지 불투수성 포장의 증가로 지하수위 저하, 생활용수 부족 등의 물과 관련된 다양한 환경문제가 점차 심화되고 있으며, 이를 해결하기 위해 빗물 저류조가 설치되어지고 있다. 빗물 저류조는 지반 저류층에 강우 유출수를 저장하여 향후 갈수기에 이용할 수 있어 도심지의 원활한 물순환에 도움이 된다. 그러나 도심지의 초기 강우는 다량의 비점오염물질을 포함하고 있으므로, 초기 강우를 빗물 저류조에 저류하기 전에 빗물에 포함된 오염물질을 정화하기 위한 시스템이 필요하다. 본 연구에서는 초기 강우의 오염물질 정화를 위해 경제성과 비점오염물질 제거효율 측면에서 우수한 토양여과기술을 적용한 빗물 저류조의 전처리시설인 모래 여과층에 대한 정화효율 및 적용성을 실내 시험과 현장 시험을 통해 평가하였다. 실내 시험은 $20cm{\times}30cm{\times}60cm$의 규격으로 제작된 챔버에 3종류의 각기 다른 모래 여과층을 조성한 후 인공 강우를 유입하는 과정으로 진행되었으며, 유출된 오염수의 TSS (총 부유물질)와 COD (화학적 산소요구량)를 측정하여 모래 여과층의 정화효율을 평가하였다. 또한 폐색 현상으로 인한 모래 여과층의 투수계수 변화를 간접적으로 평가하였다. 실내 시험을 통하여 비점오염물질 정화에 적합한 여과층을 제시하였으며, 이를 현장 빗물 저류조에 시험 시공하여 선정된 여과층의 적용성을 검증하였다.