• Title/Summary/Keyword: Non-phosphopeptide

Search Result 4, Processing Time 0.017 seconds

Improved Detection of Multi-phosphorylated Peptides by LC-MS/MS without Phosphopeptide Enrichment

  • Kim, Suwha;Choi, Hyunwoo;Park, Zee-Yong
    • Molecules and Cells
    • /
    • v.23 no.3
    • /
    • pp.340-348
    • /
    • 2007
  • Although considerable effort has been devoted in the mass spectrometric analysis of phosphorylated peptides, successful identification of multi-phosphorylated peptides in enzymatically digested protein samples still remains challenging. The ionization behavior of multi-phosphorylated peptides appears to be somewhat different from that of mono- or di-phosphorylated peptides. In this study, we demonstrate increased sensitivity of detection of multi-phosphorylated peptides of beta casein without using phosphopeptide enrichment techniques. Proteinase K digestion alone increased the detection limit of beta casein multi-phosphorylated peptides in the LC-MS analysis almost 500 fold, compared to conventional trypsin digestion (~50 pmol). In order to understand this effect, various factors affecting the ionization of phosphopeptides were investigated. Unlike ionizations of phosphopeptides with minor modifications, those of multi-phosphorylated peptides appeared to be subject to effects such as selectively suppressed ionization by more ionizable peptides and decreased ionization efficiency by multi-phosphorylation. The enhanced detection limit of multi-phosphorylated peptides resulting from proteinase K digestion was validated using a complex protein sample, namely a lysate of HEK 293 cells. Compared to trypsin digestion, the numbers of phosphopeptides identified and modification sites per peptide were noticeably increased by proteinase K digestion. Non-specific proteases such as proteinase K and elastase have been used in the past to increase detection of phosphorylation sites but the effectiveness of proteinase K digestion for multi-phosphorylated peptides has not been reported.

The effect of casein phosphopeptide amorphous calcium phosphate on the in vitro shear bond strength of orthodontic brackets

  • Park, Sun-Youn;Cha, Jung-Yul;Kim, Kyoung-Nam;Hwang, Chung-Ju
    • The korean journal of orthodontics
    • /
    • v.43 no.1
    • /
    • pp.23-28
    • /
    • 2013
  • Objective: The purpose of this study was to evaluate the effect of casein phosphopeptide amorphous calcium phosphate (CPP-ACP) on the shear bond strength (SBS) of brackets bonded to non-demineralized teeth with either phosphoric acid etching or self-etching primer. Methods: Sixty human premolars were randomly assigned to 1 of 4 treatment groups (n = 15 each): phosphoric acid etching (group 1); self-etching primer (group 2); CPP-ACP for 2 weeks + phosphoric acid etching (group 3), and CPP-ACP for 2 weeks + self-etching primer (group 4). After bonding of the maxillary premolar metal brackets, specimens were subjected to shear forces in a testing machine. Scanning electron microscopy was used to observe etching patterns on the enamel surfaces of all teeth. A 2-way analysis of variance was used to test for effects of CPP-ACP and etching system on SBS. Results: Significantly higher mean SBSs were observed in groups subjected to phosphoric acid etching (i.e., groups 1 and 3; p < 0.05). On the other hand, SBSs did not appear to be influenced by CPP-ACP (i.e., groups 3 and 4; p > 0.05). We observed a uniform and clear etched pattern on the enamel surface of the phosphoric acid etching groups. Conclusions: CPP-ACP does not significantly affect the SBS of orthodontic brackets bonded to non-demineralized teeth, regardless of which adhesive method is used to bond the brackets.

Calcium Absorption Acceleration Effect on Phosphorylated and Non-phosphorylated Peptides from Hoki (Johnius Belengeri) Frame (민태 Frame 단백질 유래의 인산화 및 비인산화 펩타이드가 체내 칼슘 흡수에 미치는 영향)

  • KIM Se-Kwon;JEON You-Jin;BYUN Hee-Guk;PARK Pyo-Jam;KIM Gyu-Hyung;CHOI Yong-Ri;LEE Yeon-Sook
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.32 no.6
    • /
    • pp.713-717
    • /
    • 1999
  • In order to utilize protein hydrolysate produced from hoki (Johnius Belengeri) frame among many different fish processing wastes, hoki frame peptide (PHFP) and phosphorylated hoki frame peptide (PHFP) were prepared, and their calcium absorption accelerating effects were investigated in comparison to control and casein phosphopeptide (CPP). In in vitro experiment, HFP and PHFP inhibited calcium phosphate formation as high as 1.5-fold and 2.5-fold, respectively, comparing to control, In addition, the inhibition rate of calcium phosphate precipitation as increasing concentrations of HFP and PHFP was risen and was similar to that of CPP at 2.0 mg/ml of PHFP concentration, In in vivo experiment using the rats, the groups fed HFP and PHFP indicated significantly increased calcium content in the femur. In particular, the calcium content in the small intestine of the rat fed PHFP was higher than that of control group by approximately $60\%$.

  • PDF