• Title/Summary/Keyword: Non-penetrating Impact

Search Result 9, Processing Time 0.018 seconds

Analysis of Human Body Injury by Non-penetrating Ballistic Impact Using a Finite Element Model of the Head and Neck (근육 모델이 고려된 두부 및 경추 유한요소모델을 이용한 비관통 피탄 충격에 의한 인체 상해 해석)

  • Kang, Moon Jeong;Jo, Young Nam;Chae, Jeawook;Yoo, Hong Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.1
    • /
    • pp.1-6
    • /
    • 2017
  • Ballistic impact on a soldier wearing a helmet can induce fatal injury, even if the helmet is not penetrated. Although studies on this type of injury have been performed, most of them have used an analytical model focused on head injury only. The injury of the neck muscles and cervical vertebrae by non-penetrating ballistic impact affects the survivability of soldiers, despite not inflicting fatal injury to the human body. Therefore, an analytical model of the head and neck muscles are necessary. In this study, an analysis of human body injury using the previously developed head model, as well as a cervical model with muscles, was performed. For the quantitative prediction of injury, the stress, strain, and HIC were compared. The results from the model including the cervical system indicated a lower extent of injury than the results from the model excluding them. The results of head injury were compared with other references for reliability.

Medulla Oblangata Injury Caused by Non-Penetrating Trauma by Chopsticks (젓가락에 의한 비관통성 외상에 의해 유발된 연수 손상 1예)

  • Jin, Hyeon-Ju;Yu, Jae-Seong;Kim, Yu-Kyung;Gang, Ho-Seok;Lee, Se-Jin
    • Journal of Yeungnam Medical Science
    • /
    • v.27 no.2
    • /
    • pp.122-126
    • /
    • 2010
  • It is common m childhood that children suffer intracavity or head injury, falling down backward, having chopsticks in their mouth. But most of them have paralysis of upper and lower extremity because of secondary damage by penetrating injury of brainstem and spine. We could not find this case which have shown infaction of medulla oblangata on MRI and paralysis by impact only without clear penetrating evidence. So the authors report this case with study of literature because we experience one case that have high signal density in brainstem on MRI, Loss of consciousness, and left hemiplegia without clear penetrating evidence after falling down backward, having chopsticks in her mouth and regard it rare case.

  • PDF

Inspection for Internal Flaw and Thickness of Concrete Tunnel Lining Using Impact Echo Test (충격반향시험에 의한 콘크리트 터널 라이닝 내부결함 및 두께 조사)

  • 김영근;이용호;정한중
    • Tunnel and Underground Space
    • /
    • v.7 no.3
    • /
    • pp.230-237
    • /
    • 1997
  • As concrete structure is getting old and decrepit, its inspection and diagnosis is getting important. Therefore, it is necessary to estimate the soundness of structure using non-destructive tests for effective repairs and maintenances. But, applications of non-destructive tests in tunnel have been used restrictively, due to accessibility only from one side in tunnel lining and presence of tunnel installations. Recently, the various non-destructive techniques have been studied. Especially, ground penetrating radar(GPR) and impact echo (IE) methods have been researched for tunnel inspection. In this study, the applicability of impact echo test in tunnel lining inspection has been investigated. This paper described the tunnel inspection for lining thickness and internal flaw using impact echo tests. Model tests were carried out using impact echo test systems on two concrete models, Model I is measuring for lining thickness, Model II is detecting for internal flaw. Also, the test were applied for lining inspections in a tunnel constructed by NATM. From the results of impact echo tests, we have concluded that impact echo test is a very useful and effective technique for inspecting the concrete tunnel linings.

  • PDF

A study about frequency domain analysis of impact-wave for detecting of structural defects in the concrete structure (구조물의 안전진단을 위한 충격파의 주파수 영역 탐사에 관한 연구)

  • Suh Baeksoo;;Kim Hyoungjun;Lee Sangchul
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.05a
    • /
    • pp.165-180
    • /
    • 2005
  • Impact seismic wave test is a method for nondestructive testing of concrete structure using of stress wave which is propagated and reflected from internal flaws within concrete structure and external surface, In this study, we performed non-destructive testing using impact seismic wave test for safety diagnosis of civil engineering structures. For this, I've compared and analized the result in the way of reflective method mostly using on one-dimension such as tunnel lining, and penetration method using the way of cross hole and tomography.

  • PDF

A Visual Factor of Blinding of the Non-Penetrating Placebo Needle (비침습성 플라시보 침 맹검의 시각적 요소 평가)

  • Park, Jae-Hyun;Chae, Youn-Byoung;Park, Hi-Joon;Lee, Hye-Jung
    • Korean Journal of Acupuncture
    • /
    • v.25 no.4
    • /
    • pp.175-185
    • /
    • 2008
  • Objective : Acupuncture (from the Latin acus, "needle," and pungere, "to prick") is a technique of inserting and manipulating fine needles at specific points on the body. As a placebo acupuncture needle device was developed based on the visual impact of needling, it has been raised that it is useful only when acupuncture points and needling are visible to subjects. To examine the visual factor of the placebo acupuncture, the present study was aimed to compare the blinding index of the verum and placebo acupuncture between masked and unmasked situation. Methods : Thirty-six patients were randomly alloted to be stimulated with a verum or placebo acupuncture in a cross-over design. They were asked to guess a right answer whether they were stimulated with the verum or placebo acupuncture at LI4 in an unmasked or masked situation. The penetrating, pain, and deqi sensations were also measured after the stimulation using modified visual analogue scale. Results : The correct answer rate of the placebo acupuncture was 22.2% and 16.7% in an unmasked and masked situation, respectively (P>0.767). The blinding index of the placebo acupuncture was -0.56 (95%CI -0.84 to -0.27) and -0.67 (95%CI -0.91 to -0.42) in an unmasked and masked situation, respectively. The penetrating and deqi sensation of the verum acupuncture were significantly higher than those of the placebo acupuncture in both unmasked and masked situation. The pain sensation of the verum acupuncture was significantly higher than that of the placebo acupuncture in masked situation, but not in unmasked situation. Conclusion : Blinding of the placebo acupuncture was successful both in the unmasked and masked situation. These finding indicate that visual factor might not play a critical role in blinding of the placebo needle. We suggest that placebo needle would be also useful in a functional magnetic resonance imaging scan even when the subject could not see the placebo needle.

  • PDF

Development of Inspection and Diagnosis System for Safety and Maintenance in Tunnel (터널 유지관리를 위한 안전진단시스템 개발에 관한 연구)

  • Kim, Young-Geun;Baek, Ki-Hyun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.3 no.1
    • /
    • pp.37-50
    • /
    • 2001
  • Recently, as tunnel structure is getting old, many deformations and defects have been occurred. As tunnel has the characteristics of underground structure, the estimation of the cause of deformation is very difficult. Then, it is necessary to investigate the state of tunnel lining and to estimate the deformation cause and safety for tunnel. In this study, inspection and diagnosis system for effective maintenance in tunnel was researched. Firstly, non-destructive techniques such as GPR (ground penetrating radar), impact echo test, and infrared thermal techniques were applied to tunnel lining inspection. Tunnel lining analysis system was developed to analyze the stability of tunnel. And, tunnel soundness evaluation system was developed to find the probable causes and indicate the method for repair and reinforcement for tunnel.

  • PDF

Centrifuge modeling of dynamically penetrating anchors in sand and clay

  • An, Xiaoyu;Wang, Fei;Liang, Chao;Liu, Run
    • Geomechanics and Engineering
    • /
    • v.30 no.6
    • /
    • pp.539-549
    • /
    • 2022
  • Accidental anchor drop can cause disturbances to seabed materials and pose significant threats to the safety and serviceability of submarine structures such as pipelines. In this study, a series of anchor drop tests was carried out to investigate the penetration mechanism of a Hall anchor in sand and clay. A special anchor drop apparatus was designed to model the inflight drop of a Hall anchor. Results indicate that Coriolis acceleration was the primary cause of large horizontal offsets in sand, and earth gravity had negligible impact on the lateral movement of dropped anchors. The indued final horizontal offset was shown to increase with the elevated drop height of an anchor, and the existence of water can slow down the landing velocity of an anchor. It is also observed that water conditions had a significant effect on the influence zone caused by anchors. The vertical influence depth was over 5 m, and the influence radius was more than 3 m if the anchor had a drop height of 25 m in dry sand. In comparison, the vertical influence depth and radius reduced to less than 3 m and 2 m, respectively, when the anchor was released from 10 m height and fell into the seabed with a water depth of 15 m. It is also found that the dynamically penetrating anchors could significantly influence the earth pressure in clay. There is a non-linear increase in the measured penetration depth with kinematic energy, and the resulted maximum earth pressure increased dramatically with an increase in kinematic energy. Results from centrifuge model tests in this study provide useful insights into the penetration mechanism of a dropped anchor, which provides valuable data for design and planning of future submarine structures.

A 60GHz Wireless Cooperative Communication System Based on Switching Beamforming

  • Shi, Wei;Wang, Jingjing;Liu, Yun;Niu, Qiuna;Zhang, Hao;Wu, Chunlei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.4
    • /
    • pp.1590-1610
    • /
    • 2016
  • The challenge of penetrating obstacles along with impact from weak multipath effects makes 60GHz signal very difficult to be transmitted in non-line of sight (NLOS) channel. So 60GHz system is vulnerable to obstructions and thus likely results in link interruption. While the application of cooperative technology to solve link blockage problemin 60GHz system should consider the characteristic of directional transmission for 60GHz signal. Therefore in this paper a system is proposed to solve the link blockage problem in 60GHz NLOS communication environment based on the concept of cooperation and also the beamforming technology, which is the basis of directional transmission for 60GHz communication system. The process of anti-blockage solution with cooperative communication is presented in detail, and the fast switching and recovery schemes are well designed. The theoretical values of symbol error rate (SER) using decode and forward (DF) cooperation and amplify and forward (AF) cooperation are presented respectively when the common channel interference exists. Simulation results demonstrate that the performance based on DF cooperation is better than the performance based on AF cooperation when directional transmission is used.

3D numerical modeling of impact wave induced by landslide using a multiphase flow model (다상흐름 모형을 이용한 산사태 유발 수면충격파 3차원 수치모의)

  • Kim, Byungjoo;Paik, Joongcheol
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.11
    • /
    • pp.943-953
    • /
    • 2021
  • The propagation of impact wave induced by landslide and debris flow occurred on the slope of lake, reservoir and bays is a three-dimensional natural phenomenon associated with strong interaction of debris flow and water flow in complex geometrical environments. We carried out 3D numerical modeling of such impact wave in a bay using a multiphase turbulence flow model and a rheology model for non-Newtonian debris flow. Numerical results are compared with previous experimental result to evaluate the performance of present numerical approach. The results underscore that the reasonable predictions of both thickness and speed of debris flow head penetrating below the water surface are crucial to accurately reproduce the maximum peak height and free surface profiles of impact wave. Two predictions computed using different initial debris flow thicknesses become different from the instant when the peaks of impact waves fall due to the gravity. Numerical modeling using relatively thick initial debris flow thickness appears to well reproduce the water surface profile of impact wave propagating across the bay as well as wave run-up on the opposite slope. The results show that the maximum run-up height on the opposite slope is not sensitive to the initial thickness of debris flows of same total volume. Meanwhile, appropriate rheology model for debris flow consisting of inviscid particle only should be employed to more accurately reproduce the debris flow propagating along the channel bottom.