• Title/Summary/Keyword: Non-metric digital camera

Search Result 25, Processing Time 0.022 seconds

Process of Digital Elevation Model Using RC Helicopter Surveying System (무선조정 헬리콥터 사진측량시스템을 이용한 수치표고모형 작성)

  • Jang, Ho-Sik
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.2
    • /
    • pp.111-116
    • /
    • 2008
  • The study installed non metric camera which was a 10 Mega Pixel camera in RC Helicopter. And the study controlled images hotographed in air on land, considering their overlap. The study could express DEM by abstracting TIN from the acquired images through image registration. Also, the study compared and examined accuracy between reference point and check point observed by Total Station which was a conventional type of survey. As the results, the study could get errors of $-0.194{\sim}0.224\;m$ on X axis, $-0.088{\sim}0.180\;m$ on Y axis and $-0.286{\sim}0.285\;m$ on Z axis. Expressing an error's RMSE in the checkpoint, the study could get of 0.021388 m on X axis, 0.015285 m on Y axis and 0.041872 m on Z axis. It is judged that the above photographing and analyzing technique are better than the existing Total Station to acquire more terrain elevation data.

Accuracy Analysis of UAV Data Processing Using DPW (DPW를 이용한 UAV 자료 처리의 정확도 분석)

  • Choi, Yun Woong;You, Ji Ho;Cho, Gi Sung
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.23 no.4
    • /
    • pp.3-10
    • /
    • 2015
  • The various studies and applications for UAVS(Unmaned Aerial Vehicle System) have been recently increased as a new technology to create 3D spatial information rapidly and accurately. UAV(Unmanned Aerial Vehicle) is economical when comparing with conventional technique, such as satellite and aerial survey, and can quickly obtain high resolution data under 5cm. This paper examined the utilizing possibility to creating 3D spatial information and analysis the compatibility the UAV data obtained by non-metric digital camera with conventional numerical photogrammetric system. The DEM and normal orthophoto is created by exclusive S/W and DPW(Digital Photogrammetry Workstation) then analysis the accuracy of created data. As a result, the accuracy of the created DEM and normal orthophoto, which is obtained by UAV then processed by DPW, is not satisfied;so it is estimated that the compatibility the UAV data with conventional numerical photogrammetric system is low.

Accuracy Assessment on the Stereoscope based Digital Mapping Using Unmanned Aircraft Vehicle Image (무인항공기 영상을 이용한 입체시기반 수치도화 정확도 평가)

  • Yun, Kong-Hyun;Kim, Deok-In;Song, Yeong Sun
    • Journal of Cadastre & Land InformatiX
    • /
    • v.48 no.1
    • /
    • pp.111-121
    • /
    • 2018
  • RIn this research, digital elevation models, true-ortho image and 3-dimensional digital complied data was generated and evaluated using unmanned aircraft vehicle stereoscopic images by applying photogrammetric principles. In order to implement stereoscopic vision, digital Photogrammetric Workstation should be used necessarily. For conducting this, in this study GEOMAPPER 1.0 is used. That was developed by the Ministry of Trade, Industry and Energy. To realize stereoscopic vision using two overlapping images of the unmanned aerial vehicle, the interior and exterior orientation parameters should be calculated. Especially lens distortion of non-metric camera must be accurately compensated for stereoscope. In this work. photogrammetric orientation process was conducted using commercial Software, PhotoScan 1.4. Fixed wing KRobotics KD-2 was used for the acquisition of UAV images. True-ortho photo was generated and digital topographic map was partially produced. Finally, we presented error analysis on the generated digital complied map. As the results, it is confirmed that the production of digital terrain map with a scale 1:2,500~1:3,000 is available using stereoscope method.

A Preliminary Study on UAV Photogrammetry for the Hyanho Coast Near the Military Reservation Zone, Eastern Coast of Korea (동해안 군사시설보호구역 주변 향호 연안역을 대상으로 무인항공사진측량에 관한 예비 연구)

  • Kim, Baeck-Oon;Yun, Kong-Hyun;Chang, Tae-Soo;Bahk, Jang-Jun;Kim, Seong-Pil
    • Ocean and Polar Research
    • /
    • v.39 no.2
    • /
    • pp.159-168
    • /
    • 2017
  • To evaluate the accuracy of UAV photogrammetry for Hyangho coast, eastern coast of Korea, we conducted a field experiment wherein UAV photogrammetry test was repeated three times. Since the Haygho coast is located within a military reservation zone, it was necessary to obtain permission to gain access to the beach and to have sensitive aerial photographs showing military facilities inspected and cropped. The standard deviation of the UAV shooting position between the three tests was less than 1 m, but repeatability of footprint on the ground was low due to wind-driven variability of the UAV pose. Self-calibrating bundle adjustment(SCBA) of implementing non-metric camera calibration was failed in one test. In two tests, the vertical error was twice as large as the pixel size except for those areas that were subject to security inspection and cropping. Given the problems that can arise with regard to the repeatability of the shooting area as well as the possibility of failure with regard to SCBA, we strongly recommend that UAV photogrammetry in coastal areas needs to be repeated at least twice.

A Study on Iris Recognition by Iris Feature Extraction from Polar Coordinate Circular Iris Region (극 좌표계 원형 홍채영상에서의 특징 검출에 의한 홍채인식 연구)

  • Jeong, Dae-Sik;Park, Kang-Ryoung
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.3
    • /
    • pp.48-60
    • /
    • 2007
  • In previous researches for iris feature extraction, they transform a original iris image into rectangular one by stretching and interpolation, which causes the distortion of iris patterns. Consequently, it reduce iris recognition accuracy. So we are propose the method that extracts iris feature by using polar coordinates without distortion of iris patterns. Our proposed method has three strengths compared with previous researches. First, we extract iris feature directly from polar coordinate circular iris image. Though it requires a little more processing time, there is no degradation of accuracy for iris recognition and we compares the recognition performance of polar coordinate to rectangular type using by Hamming Distance, Cosine Distance and Euclidean Distance. Second, in general, the center position of pupil is different from that of iris due to camera angle, head position and gaze direction of user. So, we propose the method of iris feature detection based on polar coordinate circular iris region, which uses pupil and iris position and radius at the same time. Third, we overcome override point from iris patterns by using polar coordinates circular method. each overlapped point would be extracted from the same position of iris region. To overcome such problem, we modify Gabor filter's size and frequency on first track in order to consider low frequency iris patterns caused by overlapped points. Experimental results showed that EER is 0.29%, d' is 5,9 and EER is 0.16%, d' is 6,4 in case of using conventional rectangular image and proposed method, respectively.