• Title/Summary/Keyword: Non-linear response

Search Result 698, Processing Time 0.032 seconds

Improvements to the Terrestrial Hydrologic Scheme in a Soil-Vegetation-Atmosphere Transfer Model (토양-식생-대기 이송모형내의 육지수문모의 개선)

  • Choi, Hyun-Il;Jee, Hong-Kee;Kim, Eung-Seok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.529-534
    • /
    • 2009
  • Climate models, both global and regional, have increased in sophistication and are being run at increasingly higher resolutions. The Land Surface Models (LSMs) coupled to these climate models have evolved from simple bucket models to sophisticated Soil-Vegetation-Atmosphere Transfer (SVAT) schemes needed to support complex linkages and processes. However, some underpinnings of terrestrial hydrologic parameterizations so crucial in the predictions of surface water and energy fluxes cause model errors that often manifest as non-linear drifts in the dynamic response of land surface processes. This requires the improved parameterizations of key processes for the terrestrial hydrologic scheme to improve the model predictability in surface water and energy fluxes. The Common Land Model (CLM), one of state-of-the-art LSMs, is the land component of the Community Climate System Model (CCSM). However, CLM also has energy and water biases resulting from deficiencies in some parameterizations related to hydrological processes. This research presents the implementation of a selected set of parameterizations and their effects on the runoff prediction. The modifications consist of new parameterizations for soil hydraulic conductivity, water table depth, frozen soil, soil water availability, and topographically controlled baseflow. The results from a set of offline simulations are compared with observed data to assess the performance of the new model. It is expected that the advanced terrestrial hydrologic scheme coupled to the current CLM can improve model predictability for better prediction of runoff that has a large impact on the surface water and energy balance crucial to climate variability and change studies.

  • PDF

Shape Optimization of Metal Forming and Forging Products using the Stress Equivalent Static Loads Calculated from a Virtual Model (가상모델로부터 산출된 응력 등가정하중을 이용한 금속 성형품 및 단조품의 형상최적설계)

  • Jang, Hwan-Hak;Jeong, Seong-Beom;Park, Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.11
    • /
    • pp.1361-1370
    • /
    • 2012
  • A shape optimization is proposed to obtain the desired final shape of forming and forging products in the manufacturing process. The final shape of a forming product depends on the shape parameters of the initial blank shape. The final shape of a forging product depends on the shape parameters of the billet shape. Shape optimization can be used to determine the shape of the blank and billet to obtain the appropriate final forming and forging products. The equivalent static loads method for non linear static response structural optimization (ESLSO) is used to perform metal forming and forging optimization since nonlinear dynamic analysis is required. Stress equivalent static loads (stress ESLs) are newly defined using a virtual model by redefining the value of the material properties. The examples in this paper show that optimization using the stress ESLs is quite useful and the final shapes of a forming and forging products are identical to the desired shapes.

Enhanced solid element for modelling of reinforced concrete structures with bond-slip

  • Dominguez, Norberto;Fernandez, Marco Aurelio;Ibrahimbegovic, Adnan
    • Computers and Concrete
    • /
    • v.7 no.4
    • /
    • pp.347-364
    • /
    • 2010
  • Since its invention in the $19^{th}$ century, Reinforced Concrete (RC) has been widely used in the construction of a lot of different structures, as buildings, bridges, nuclear central plants, or even ships. The details of the mechanical response for this kind of structures depends directly upon the material behavior of each component: concrete and steel, as well as their interaction through the bond-slip, which makes a rigorous engineering analysis of RC structures quite complicated. Consequently, the practical calculation of RC structures is done by adopting a lot of simplifications and hypotheses validated in the elastic range. Nevertheless, as soon as any RC structural element is working in the inelastic range, it is possible to obtain the numerical prediction of its realistic behavior only through the use of non linear analysis. The aim of this work is to develop a new kind of Finite Element: the "Enhanced Solid Element (ESE)" which takes into account the complex composition of reinforced concrete, being able to handle each dissipative material behavior and their different deformations, and on the other hand, conserving a simplified shape for engineering applications. Based on the recent XFEM developments, we introduce the concept of nodal enrichment to represent kinematics of steel rebars as well as bonding. This enrichment allows to reproduce the strain incompatibility between concrete and steel that occurs because of the bond degradation and slip. This formulation was tested with a couple of simple examples and compared to the results obtained from other standard formulations.

Structural performance of timber frame joints - Full scale tests and numerical validation

  • Aejaz, S.A.;Dar, A.R.;Bhat, J.A.
    • Structural Engineering and Mechanics
    • /
    • v.74 no.4
    • /
    • pp.457-470
    • /
    • 2020
  • The force resisting ability of a connection has direct implications on the overall response of a timber framed structure to various actions, thereby governing the integrity and safety of such constructions. The behavior of timber framed structures has been studied by many researchers by testing full-scale-connections in timber frames so as to establish consistent design provisions on the same. However, much emphasis in this approach has been unidirectional, that has focused on a particular connection configuration, with no research output stressing on the refinement of the existing connection details in order to optimize their performance. In this regard, addition of adhesive to dowelled timber connections is an economically effective technique that has a potential to improve their performance. Therefore, a comparative study to evaluate the performance of various full-scale timber frame Nailed connections (Bridled Tenon, Cross Halved, Dovetail Halved and Mortise Tenon) supplemented by adhesive with respect to Nailed-Only counterparts under tensile loading has been investigated in this paper. The load-deformation values measured have been used to calculate stiffness, load capacity and ductility in both the connection forms (with and without adhesion) which in turn have been compared to other configurations along with the observed failure modes. The observed load capacity of the tested models has also been compared to the design strengths predicted by National Design Specifications (NDS-2018) for timber construction. Additionally, the experimental behavior was validated by developing non-linear finite element models in ABAQUS. All the results showed incorporation of adhesive to be an efficient and an economical technique in significantly enhancing the performance of various timber nailed connections under tensile action. Thus, this research is novel in a sense that it not only explores the tensile behavior of different nailed joint configurations common in timber construction but also stresses on improvising the same in a logical manner hence making it distinctive in its approach.

Inelastic behavior of systems with flexible base

  • Fernandez-Sola, Luciano R.;Huerta-E catl, Juan E.
    • Earthquakes and Structures
    • /
    • v.14 no.5
    • /
    • pp.411-424
    • /
    • 2018
  • This study explores the inelastic behavior of systems with flexible base. The use of a single degree of freedom system (ESDOF) with equivalent ductility to represent the response of flexible base systems is discussed. Two different equations to compute equivalent ductility are proposed, one which includes the contribution of rigid body components, and other based on the overstrength of the structure. In order to asses the accuracy of ESDOF approach with the proposed equations, the behavior of a 10-story regular building with reinforced concrete (RC) moment resisting frames is studied. Local and global ductility capacity and demands are used to study the modifications introduced by base flexibility. Three soil types are considered with shear wave velocities of 70, 100 and 250 m/s. Soil-foundation stiffness is included with a set of springs on the base (impedance functions). Capacity curves of the building are computed with pushover analysis. In addition, non linear time history analysis are used to asses the ductility demands. Results show that ductility capacity of the soil-structure system including rigid body components is reduced. Base flexibility does not modify neither yield and maximum base shear. Equivalent ductility estimated with the proposed equations is fits better the results of the numerical model than the one considering elastoplastic behavior. Modification of beams ductility demand due to base flexibility are not constant within the structure. Some elements experience reduced ductility demands while other elements experience increments when flexible base is considered. Soil structure interaction produces changes in the relation between yield strength reduction factor and structure ductility demand. These changes are dependent on the spectral shape and the period of the system with fixed and flexible base.

Buckling behavior of a single-layered graphene sheet resting on viscoelastic medium via nonlocal four-unknown integral model

  • Bellal, Moussa;Hebali, Habib;Heireche, Houari;Bousahla, Abdelmoumen Anis;Tounsi, Abdeldjebbar;Bourada, Fouad;Mahmoud, S.R.;Bedia, E.A. Adda;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.34 no.5
    • /
    • pp.643-655
    • /
    • 2020
  • In the present work, the buckling behavior of a single-layered graphene sheet (SLGS) embedded in visco-Pasternak's medium is studied using nonlocal four-unknown integral model. This model has a displacement field with integral terms which includes the effect of transverse shear deformation without using shear correction factors. The visco-Pasternak's medium is introduced by considering the damping effect to the classical foundation model which modeled by the linear Winkler's coefficient and Pasternak's (shear) foundation coefficient. The SLGS under consideration is subjected to compressive in- plane edge loads per unit length. The influences of many parameters such as nonlocal parameter, geometric ratio, the visco-Pasternak's coefficients, damping parameter, and mode numbers on the buckling response of the SLGSs are studied and discussed.

A study of Self-Tuning PI Speed Controller Based on Fuzzy for Permanent Magnet Linear Synchronous Motor (선형 영구자석형 동기 전동기의 Fuzzy 기반 Self-Tuning PI 속도 제어기에 관한 연구)

  • Lee Chin-Ha;Choi Cheol;Kim Cheul-U
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.6
    • /
    • pp.602-611
    • /
    • 2004
  • Servo system has commonly adapted PI controller with fixed gains, because of its simplicity and determinative relationship among the parameters. The fixed gains PI system may be applied well to some operation conditions, but not non-linearities, complex and time variant operation conditions. For solving these problems, another conventional method, 'variable gun schedule according to speed', is published. The value of gain is determined according to the absolute value of the mover real speed. In this paper, FSTPIC(Fuzzy Self-Tuning PI Controller) is proposed based on various experiences to rapidly reduce speed error and to secure a good speed response characteristics. The effectiveness of proposed algorithms is demonstrated by comparing to two conventional gain systems via 4-quadrant operation.

Analysis of High Velocity Impact on SFRC Panels Using ABAQUS (ABAQUS를 이용한 강섬유보강 콘크리트 패널의 고속 충돌 거동 해석)

  • Son, Seok-Kwon;Jang, Seok-Joon;Yun, Hyun-Do;Kim, Yong-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.2
    • /
    • pp.141-148
    • /
    • 2016
  • This paper employed finite element method (FEM) to study the dynamic response of Steel Fiber-Reinforced Concrete(SFRC) panels subjected to impact loading by spherical projectiles. The material properties and non-linear stress-strain curves of SFRC were obtained by compression test and flexural test. Various parametric studies, such as the effect of fiber volume fraction and thickness of panels, are made and numerical analyses are compared with experiments conducted. It is shown that protective performance of concrete panels will be improved by adding steel fiber. Area loss rates and weight loss rates are decreased with increasing fiber volume fraction. Also, penetration modes can be expected by FEM, showing well agreement with experiment. Results can be applied for designing the protection of military structures and other facilities against high-velocity projectiles.

A Study on the Visual Preference in Enclosed Spaces Based on the Paired Comparison Method (쌍체비교기법을 통한 중정의 시각적 선호에 관한 연구)

  • 이태희;임승빈
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.14 no.3
    • /
    • pp.3-19
    • /
    • 1987
  • The purpose of this study was to investigate desirable width / height ratio of enclosed space and to offer basic information for the design of enclosed spaces. The data of this study were gathered from the experiment through simulation. Photographic sampling of 7 campus sites located in Kwanak campus of Seoul National University and slides of perspective drawings of enclosed spaces with various D/H ratio (12, 1, 2, 4, 6, 9, 12)were used for simulation. A response format was made using the method of paired comparison and students from various departments were randomly selected for evaluation. In the method of analysis of data Thurstone's equation of Comparative Judgement was used for calculating preference score. A1so non-linear regression analysis was used for finding out relations between preference and D/H ratio. The other method of data analysis were correlation, Chi - test. And the results were summarized as follows. 1. In sketch simulation the ratio of D/H 4 got the highest preference store. This result suggests that desirable D/H ratio of enclosed space is D/H 4. And at the lower range of D/H ratio, as ratio increases, the preference score increases. At the higher range of D/H ratio, however, as ratio increases, the preference score starts to decrease from the cardinal point of D/H 4. 2. In campus photograph simulation preference is influenced by slope, elevation change of floor, trees, lawn area, familiarity, space arrangement, and exterior shape of building besides D/H ratio. 3. The preference virtue was not significantly affected by order effect. This result suggests that order effect can be ignored in the study of visual preference. 4. There are so many factors related to preference that it is difficult to explore those factors without scientific information based on scientific method. We must carry out study for scientific approach of planning and design based on precise, complete simulation technique.

  • PDF

Coherent motion of microwave-induced fluxons in intrinsic Josephson junctions of HgI$_2$-intercalated Bi$_2$Sr$_2$C aCu$_2$O$_{8+x}$ single crystals

  • Kim, Jin-Hee;Doh, Yong-Joo;Chang, Sung-Ho;Lee, Hu-Jong;Chang, Hyun-Sik;Kim, Kyu-Tae;Jang, Eue-Soon;Choy, Jin-Ho
    • 한국초전도학회:학술대회논문집
    • /
    • v.10
    • /
    • pp.65-65
    • /
    • 2000
  • Microwave response of intrinsic Josephson junctions in mesa structure formed on HgI2-intercalated Bi2Sr2CaCu2O8+x single crystals was studied in a wide range of microwave frequency. With irradiation of 73${\sim}$76 GHz microwave, the supercurrent branch becomes resistive above a certain onset microwave power. At low current bias, the current-voltage characteristics show linear behavior, while at high current bias, the resistive branch splits into multiple sub-branches. The voltage spacing between neighboring sub-branches increase with the microwave power and the total number of sub-branches is almost identical to the number of intrinsic Josephson junctions in the mesa. All the experimental results suggest that each sub-branch represents a specific mode of collective motion of Josephson vortices generated by the microwave irradiation. With irradiation of microwave of microwave of frequency lower than 20 GHz, on the other hand, no branch splitting was observed and the current-voltage characteristics exhibited complex behavior at hlgh blas currents. This result can be explained in terms of incoherent motion of Josephson vortices generated by non-uniform microwave irradiation.

  • PDF