• 제목/요약/키워드: Non-linear response

검색결과 701건 처리시간 0.029초

방송용 오디오 콘텐츠 제작을 위한 비균등 선형 마이크로폰 어레이 기반의 음원분리 방법 (Non-uniform Linear Microphone Array Based Source Separation for Broadcasting Audio Content Production)

  • 전찬준;김홍국
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2015년도 추계학술대회
    • /
    • pp.21-22
    • /
    • 2015
  • 현재 UHDTV (Ultra-High-Definition TV) 시대에 사용될 멀티미디어 부호화로 MPEG-H를 표준화로 진행하고 있다. 향후 방송용 오디오 콘텐츠는 채널 오디오 콘텐츠에서 진화하여 객체 오디오 콘텐츠까지도 필요하게 된다. 이에 따라, 본 논문에서는 고품질의 방송용 오디오 콘텐츠를 제작하기 위한 비균등 선형 마이크로폰 어레이 기반의 음원분리 방법을 제안한다. 제안된 방법은 주어진 어레이 배치에 따라 채널간의 시간차를 분석하고, 이에 따른 객체 오디오 생성을 위한 음원분리 기술을 적용한다. 제안된 기법의 성능을 검증하기 위하여 음원분리도를 측정하였고, MVDR (Minimum Variance Distortionless Response) 빔형성기와 성능을 비교하였다. 비교 결과, 제안된 기법이 MVDR 빔형성기에 비하여 12.8% 높은 음원분리도 수치를 나타낸 것을 확인하였다.

  • PDF

Different macroscopic models for slender and squat reinforced concrete walls subjected to cyclic loads

  • Shin, Jiuk;Kim, JunHee
    • Earthquakes and Structures
    • /
    • 제7권5호
    • /
    • pp.877-890
    • /
    • 2014
  • The purpose of this study is to present adequate modeling solutions for squat and slender RC walls. ASCE41-13 (American Society of Civil Engineers) specifies that the aspect ratios of height to width for the RC walls affect the hysteresis response. Thus, this study performed non-linear analysis subjected to cyclic loading using two different macroscopic models: one of macroscopic models represents flexural failure of RC walls (Shear Wall Element model) and the other (General Wall Element model) reflects diagonal shear failure occurring in the web of RC walls. These analytical results were compared to previous experimental studies for a slender wall (> aspect ratio of 3.0) and a squat wall (= aspect ratio of 1.0). For the slender wall, the difference between the two macroscopic models was negligible, but the squat wall was significantly affected by parameters for shear behavior in the modeling method. For accurate performance evaluation of RC buildings with squat walls, it would be reasonable to use macroscopic models that give consideration to diagonal shear.

Preliminary design and inelastic assessment of earthquake-resistant structural systems

  • Rubinstein, Marcelo;Moller, Oscar;Giuliano, Alejandro
    • Structural Engineering and Mechanics
    • /
    • 제26권3호
    • /
    • pp.297-313
    • /
    • 2007
  • A preliminary performance-based seismic design methodology is proposed. The top yield displacement of the system is computed from these of the components, which are assumed constant. Besides, a simple procedure to evaluate the top yield displacement of frames is developed. Seismic demands are represented in the form of yield point spectra. The methodology is general, conceptually transparent, uses simple calculations based on first principles and is applicable to asymmetric systems. To consider a specific situation two earthquake levels, occasional and rare are considered. The advantage of an arbitrary assignment of strength to the different components to reduce eccentricities and improved the torsional response of the system is addressed. The methodology is applied to an asymmetric five story building, and the results are verified by push-over analysis and non linear dynamic analysis.

Response of self-centering braced frame to near-field pulse-like ground motions

  • Rahgozar, Navid;Moghadam, Abdolreza S.;Aziminejad, Armin
    • Structural Engineering and Mechanics
    • /
    • 제62권4호
    • /
    • pp.497-506
    • /
    • 2017
  • A low damage self-centering braced frame equipped with post-tensioning strands is capable of directing damage to replaceable butterfly-shaped fuses. This paper investigates the seismic performance of rocking braced frame under near-field pulse-like ground motions compared to far-field records. A non-linear time history analysis is performed for twelve self-centering archetypes. A sensitivity analysis is carried out to examine the influences of ground motion types and modeling parameters. Findings represent the proper efficiency of the self-centering system under both far-field and near-field pulse-like ground motions.

Influence of viscous phenomena on steel-concrete composite beams with normal or high performance slab

  • Fragiacomo, M.;Amadio, C.;Macorini, L.
    • Steel and Composite Structures
    • /
    • 제2권2호
    • /
    • pp.85-98
    • /
    • 2002
  • The aim of the paper is to present some results about the influence of rheological phenomena on steel-concrete composite beams. Both the cases of slab with normal and high performance concrete for one and two-span beams are analysed. A new finite element model that allows taking into account creep, shrinkage and cracking in tensile zones for concrete, along with non-linear behaviour of connection, steel beam and reinforcement, has been used. The main parameters that affect the response of the composite beam under the service load are highlighted. The influence of shrinkage on the slip over the supports is analysed, together with the cracking along the beam. At last, by performing a collapse analysis after a long-term analysis, the influence of rheological phenomena on the ductility demand of connection and reinforcement is analysed.

Design of sliding-type base isolators by the concept of equivalent damping

  • Yang, Yeong-Bin;Chen, Yi-Chang
    • Structural Engineering and Mechanics
    • /
    • 제8권3호
    • /
    • pp.299-310
    • /
    • 1999
  • One problem with base isolators of the sliding type is that their dynamic responses are nonlinear, which cannot be solved in an easy manner, as distinction must be made between the sliding and non-sliding phases. The lack of a simple method for analyzing structures installed with base isolators is one of the obstacles encountered in application of these devices. As an initial effort toward simplification of the analysis procedure for base-isolated structures, an approach will be proposed in this paper for computing the equivalent damping for the resilient-friction base isolators (R-FBI), based on the condition that the sum of the least squares of errors of the linearized response with reference to the original nonlinear one is a minimum. With the aid of equivalent damping, the original nonlinear system can be replaced by a linear one, which can then be solved by methods readily available. In this paper, equivalent damping curves are established for all ranges of the parameters that characterize the R-FBI for some design spectra.

Reliability of articulated tower joint against random base shear

  • Islam, Nazrul;Ahmad, Suhail
    • Structural Engineering and Mechanics
    • /
    • 제27권1호
    • /
    • pp.33-48
    • /
    • 2007
  • An Articulated tower is one of the compliant offshore structures connected to the sea-bed through a universal joint which is the most vulnerable location of the tower that sustains the randomly fluctuating shear stresses. The time history response of the bottom hinge shear is obtained and presented in the spectral form. The fatigue and fracture reliability assessment of the tower joint against randomly varying shear stresses have been carried out. Non-linear limit state functions are derived in terms of important random variables using S-N curve and fracture mechanics approaches. Advanced First Order Reliability Method is used for reliability assessment. Sensitivity analysis shows the influence of various variables on the hinge safety. Fatigue life estimation has been made using probabilistic approach.

Reliability analysis of the nonlinear behaviour of stainless steel cover-plate joints

  • Averseng, Julien;Bouchair, Abdelhamid;Chateauneuf, Alaa
    • Steel and Composite Structures
    • /
    • 제25권1호
    • /
    • pp.45-55
    • /
    • 2017
  • Stainless steel exhibits high ductility and strain hardening capacity in comparison with carbon steel widely used in constructions. To analyze the particular behaviour of stainless steel cover-plate joints, an experimental study was conducted. It showed large ductility and complex failure modes of the joints. A non-linear finite element model was developed to predict the main parameters influencing the behaviour of these joints. The results of this deterministic model allow us to built a meta-model by using the quadratic response surface method, in order to allow for efficient reliability analysis. This analysis is then applied to the assessment of design formulae in the currently used codes of practice. The reliability analysis has shown that the stainless steel joint design according to Eurocodes leads to much lower failure probabilities than the Eurocodes target reliability for carbon steel, which incites revising the resisting model evaluation and consequently reducing stainless steel joint costs. This approach can be used as a basis to evaluate a wide range of steel joints involving complex failure modes, particularly bearing failure.

전자기 과도현상 해석을 위한 S 영역 등가시스템 PART II: 주파수 의존 교류 시스템 등가 (S-Domain Equivalent System for Electromagnetic Transient Studies PART II : Frequency Dependent AC System Equivalent)

  • 정형환;왕용필
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제54권4호
    • /
    • pp.165-171
    • /
    • 2005
  • Electromagnetic transient simulation can be used to model complex non-linearities that very difficult to represent adequately in the frequency domain. This problem is greatly reduced with the use of frequency dependent network equivalents for the linear part of the system. S-domain rational function fitting techniques for representing frequency dependent equivalents have been developed using Least Squares Fitting(LSF). However it does not suffer the implementation error that exited in this work as it ignored the instantaneous term. This paper presents the formulation for developing 2 port Frequency Dependent AC System Equivalent(FDACSE) with the instantaneous term in S-domain and illustrates its use. This 2 port FDNE have been applied to the New Zealand AC system. The electromagnetic transient package PSCAD/EMTDC is used to assess the transient response of the 2 port (FDACSE) developed with Norton Equivalent network. The study results have indicated the robustness and accuracy of 2 port FDACSE for electromagnetic transient studies.

Hybrid GA-PID WAVENET 제어기를 이용한 모형 헬리콥터 시스템의 자세 제어 (Attitude Control of Helicopter Simulator System using A Hybrid GA-PID WAVENET Controller)

  • 박두환;지석준;이준탁
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제53권6호
    • /
    • pp.433-439
    • /
    • 2004
  • The Helicopter Simulator System is non-linear and complex. Futhermore, because of absence of its accurate mathematical model, it is difficult to control accurately its attitudes such as elevation angle and azimuth one. Therefore, we proposed a Hybrid GA-PID WAVENET(Genetic Algorithm Proportional Integral Derivative Wavelet Neural Network)control technique to control efficiently these angles. The proposed Hybrid GA-PID WAVENET is made through the following process. First, the WAVENET fundamental functions are defined. And their dilation and translation values are adjusted by GA to construct the optimal WAVENET controller. Secondly, the proportional, integral, and derivative gain coefficients of PR controller are tuned optimally. Finally, WAVENET controller which has a good transient characteristic and GA-PE controller which has a good steady state characteristic is adequately combined in hybrid type. Through the computer simulations, it is proved that the Hybrid GA-PE WAVENET control technique has a more excellent dynamic response than PID control technique and GA-PID one.