Acknowledgement
Supported by : Yonsei University
References
- ACI Building Code Requirements for Structural Concrete and Commentary (2008), ACI 318-08, American Concrete Institute, Detroit, Mich.
- AIK-Architectural Institute of Korea (2009), Korea Building Code - KBC 2009.
- ASCE (2014), Seismic Evaluation and Retrofit of Existing Buildings, ASCE/SEI 41-13, American Society of Civil Engineers.
- CEN Technical Committee 250/SC8 (1995), "Eurocode 8: Earthquake Resistant Design of Structures - Part 1: General Rules (ENV 1998 1-1, 1-2 and 1-3)", CEN, Brussels.
- Computer and Structures Inc. (2006), Nonlinear Analysis and Performance Assessment for 3D Structures, Berkeley, CA.
- Eom, T.S. and Park, H.G. (2004), "Energy-based hysteretic models for R/C members", J. Earthq. Eng. Society Korea, 8(5), 45-54. https://doi.org/10.5000/EESK.2004.8.5.045
- Gulec, C.K. and Whittaker, A.S. (2009), Performance-Based Assessment and Design of Squat Reinforced Concrete Shear Walls, Technical Report No. MCEER-09-0010, MCEER, University at Buffalo, State University of New York.
- Kabeyasawa, T., Otani, S. and Aoyama, H. (1983), "Nonlinear earthquake response analysis of RC wall frame structure", Trans. Japan Conc. Institute.
- Kim, J.H., Ghaboussi J. and Elnashai A.S. (2010), "Mechanical and informational modeling of steel beam-to-column connections", Eng. Struct. 32(2), 449-458. https://doi.org/10.1016/j.engstruct.2009.10.007
- Kim, J.H., Ghaboussi J. and Elnashai A.S. (2012), "Hysteretic mechanical-informational modeling of bolted steel frame connections", Eng. Struct. 45, 1-11. https://doi.org/10.1016/j.engstruct.2012.06.014
- Kim, T.W., Foutch, D.A., LaFave, J.M. and Wilcoski, J. (2004), "Performance assessment of reinforced concrete structural walls for seismic loads", Structural Research Series - No. 634, Dept. of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign.
- Kim, M.S., Yun S.H., Lee Y.H. and Kim H.C. (2009), "Analysis of lateral retrofitting effect by FRP and BRB for beam-column element joint of low-rise piloti buildings", J. Earthq. Eng. Society Korea, 13(2), 69-77. https://doi.org/10.5000/EESK.2009.13.2.069
- Linde, P. (1993), Numerical Modeling and Capacity Design of Earthquake-Resistant Reinforced Concrete Walls, Report No. 200, Institute of Structural Engineering, Swiss Federal Institute of Technology (ETH), Zurich, Birkhauser, Basel.
- Mander, J.B., Priestley, M.J.N. and Park, R. (1988), "Theoretical stress-strain model for confined concrete", J. Struct. Eng. ASCE, 114(8), 1804-1826. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804)
- Milev, J. (1996), "Two-dimensional analytical model of reinforced concrete shear walls", Proceeding of 11th World Conference Earthquake Engineering, Paper No. 320.
- Orakcal, K., Massone, L.M. and Wallace, W.J. (2006), "Analytical modeling of reinforced concrete walls for predicting flexural and coupled-shear-flexural response", Pacific Earthquake Engineering Research Center, University of California, Los Angeles.
- Park, H.G. and Eom, T.S. (2007), "Truss model for nonlinear analysis of RC members subjected to cyclic loading", J. Struct. Eng., 133(10), 1351-1363. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:10(1351)
- Salonikios, T.N., Kappos, A.J., Tegos, I.A. and Penelis, G.G. (1999), "Cyclic load behavior of low-slenderness reinforce concrete walls: design basis and test results", ACI Struct. J., 96(4), 649-660.
- Salonikios, T.N., Kappos, A.J., Tegos, I.A. and Penelis, G.G. (2000), "Cyclic load behavior of low-slenderness reinforce concrete walls: Failure modes, strength analysis, and design implications", ACI Struct. J., 97(1), 132-141.
- Shin, J., Kim, J. and Lee, K. (2014), "Seismic assessment of damaged piloti-type RC building subjected to successive earthquakes", Earthq. Eng. Struct. D.: doi: 10.1002/eqe.2412.
- Sullivan, T.J. (2010), "Capacity design considerations for RC frame-wall structures", Earthq. Struct., 1(4), 391-410. https://doi.org/10.12989/eas.2010.1.4.391
- Takabatake, H. (2010), "Two-dimensional rod theory for approximate analysis of building structures", Earthq. Struct., 1(1), 1-19. https://doi.org/10.12989/eas.2010.1.1.001
- Thomsen, J.H. and Wallace, J.W. (2004), "Displacement-based design of sSlender reinforced concrete structural walls - experimental verification", J. Struct. Eng., ASCE, 130(4), 618-630. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:4(618)
- Tiong, P.L.Y., Adnan, A. and Hamid, N.H.A. (2013), "Behaviour factor and displacement estimation of low-ductility precast wall system under seismic actions", Earthq. Struct., 5(6), 625-655. https://doi.org/10.12989/eas.2013.5.6.625
- Vulcano, A. and Bertero, V.V. (1987), Analytical Models for Predicting the Lateral Response of RC Shear Walls: Evaluation of Their Reliability, Report No. UCB/EERC-87/19, EERC, University of California, Berkeley, California.
Cited by
- Development of limit states for seismic fragility assessment of piloti-type structures verified with observed damage data vol.251, pp.no.pb, 2014, https://doi.org/10.1016/j.engstruct.2021.113562