• 제목/요약/키워드: Non-linear error model.

검색결과 166건 처리시간 0.021초

핸드-아이 보정과 능동 스테레오 비젼의 일반적 해석 (The General Analysis of an Active Stereo Vision with Hand-Eye Calibration)

  • 김진대;이재원;신찬배
    • 한국정밀공학회지
    • /
    • 제21권5호
    • /
    • pp.89-90
    • /
    • 2004
  • The analysis of relative pose(position and rotation) between stereo cameras is very important to determine the solution that provides three-dimensional information for an arbitrary moving target with respect to robot-end. In the space of free camera-model, the rotational parameters act on non-linear factors acquiring a kinematical solution. In this paper the general solution of active stereo that gives a three-dimensional pose of moving object is presented. The focus is to achieve a derivation of linear equation between a robot's end and active stereo cameras. The equation is consistently derived from the vector of quaternion space. The calibration of cameras is also derived in this space. Computer simulation and the results of error-sensitivity demonstrate the successful operation of the solution. The suggested solution can also be applied to the more complex real time tracking and quite general and are applicable in various stereo fields.

유전자 알고리즘을 이용한 WGR 다차원 강우모형의 매개변수 추정 (Estimation of the WGR Multi-dimensional Precipitation Model Parameters using the Genetic Algorithm)

  • 정광식;유철상;김중훈
    • 한국수자원학회논문집
    • /
    • 제34권5호
    • /
    • pp.473-486
    • /
    • 2001
  • WGR 강우모형은 중규모 정도의 강우를 표현하기 위해 개발된 개념적인 모형으로 대기의 동역학적 특성과 강우의 통계학적 특성이 비교적 잘 반영된 모형이다(Waymire 등, 1984). 그러나 이 모형은 최대 18개의 매개변수르 가지며 모형의 구조가 강한 비선형성을 가지고 있어 매개변수 추정이 매우 어려운 문제로 남아 있다. 지금까지 각각 다른 지역의 강우에 대해 비선형 최적화 기법(non-linear programming; NLP)을 이용하여 매개변수를 추정한 예가 있으나 그 과정 자체가 매우 복잡하여 이 모형을 다른 목적으로 이용하는데 문제로 지적되고 있다. 본 연구에서는 유전자 알고리즘(genetic algorithm; GA)을 이용한 WGR 모형의 매개변수 추정법을 제시하였으며, 이를 한강유역에 적용하여 NLP에 의한 결과 (Yoo와 Kwon, 2000)와 비교하였다. 적용 결과 GA는 NLP에 비해 상대적으로 작은 SSE(sum of square error)를 나타내었고 계절의 변화에 보다 일관적인 반응을 보임을 알 수 있었다. 또한 추정된 매개변수 분석결과, 여름철의 높은 강우량은 강우 세포의 강도보다는 강우전선의 도달율과 밀접한 관계가 있는 것으로 나타났다.

  • PDF

다중회귀분석에 의한 하천 월 유출량의 추계학적 추정에 관한 연구 (A Study on Stochastic Estimation of Monthly Runoff by Multiple Regression Analysis)

  • 김태철;정하우
    • 한국농공학회지
    • /
    • 제22권3호
    • /
    • pp.75-87
    • /
    • 1980
  • Most hydro]ogic phenomena are the complex and organic products of multiple causations like climatic and hydro-geological factors. A certain significant correlation on the run-off in river basin would be expected and foreseen in advance, and the effect of each these causual and associated factors (independant variables; present-month rainfall, previous-month run-off, evapotranspiration and relative humidity etc.) upon present-month run-off(dependent variable) may be determined by multiple regression analysis. Functions between independant and dependant variables should be treated repeatedly until satisfactory and optimal combination of independant variables can be obtained. Reliability of the estimated function should be tested according to the result of statistical criterion such as analysis of variance, coefficient of determination and significance-test of regression coefficients before first estimated multiple regression model in historical sequence is determined. But some error between observed and estimated run-off is still there. The error arises because the model used is an inadequate description of the system and because the data constituting the record represent only a sample from a population of monthly discharge observation, so that estimates of model parameter will be subject to sampling errors. Since this error which is a deviation from multiple regression plane cannot be explained by first estimated multiple regression equation, it can be considered as a random error governed by law of chance in nature. This unexplained variance by multiple regression equation can be solved by stochastic approach, that is, random error can be stochastically simulated by multiplying random normal variate to standard error of estimate. Finally hybrid model on estimation of monthly run-off in nonhistorical sequence can be determined by combining the determistic component of multiple regression equation and the stochastic component of random errors. Monthly run-off in Naju station in Yong-San river basin is estimated by multiple regression model and hybrid model. And some comparisons between observed and estimated run-off and between multiple regression model and already-existing estimation methods such as Gajiyama formula, tank model and Thomas-Fiering model are done. The results are as follows. (1) The optimal function to estimate monthly run-off in historical sequence is multiple linear regression equation in overall-month unit, that is; Qn=0.788Pn+0.130Qn-1-0.273En-0.1 About 85% of total variance of monthly runoff can be explained by multiple linear regression equation and its coefficient of determination (R2) is 0.843. This means we can estimate monthly runoff in historical sequence highly significantly with short data of observation by above mentioned equation. (2) The optimal function to estimate monthly runoff in nonhistorical sequence is hybrid model combined with multiple linear regression equation in overall-month unit and stochastic component, that is; Qn=0. 788Pn+0. l30Qn-1-0. 273En-0. 10+Sy.t The rest 15% of unexplained variance of monthly runoff can be explained by addition of stochastic process and a bit more reliable results of statistical characteristics of monthly runoff in non-historical sequence are derived. This estimated monthly runoff in non-historical sequence shows up the extraordinary value (maximum, minimum value) which is not appeared in the observed runoff as a random component. (3) "Frequency best fit coefficient" (R2f) of multiple linear regression equation is 0.847 which is the same value as Gaijyama's one. This implies that multiple linear regression equation and Gajiyama formula are theoretically rather reasonable functions.

  • PDF

LACTATION CURVE OF HOLSTEIN FRIESIAN COWS IN THE KINGDOM OF SAUDI ARABIA

  • Ali, A.K.A.;Al-Jumaah, R.S.;Hayes, E.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제9권4호
    • /
    • pp.439-447
    • /
    • 1996
  • Monthly test day production for 12,020 records, were collected from six of the largest specialized dairy farms located in central region of the Kingdom of Saudi Arabia. The records described lactating cows in four parities and two seasons of calving. Monthly test day records were fitted using Wood's model $At{{^b}{_e}}^{-ct}$ with multiple and additive error term. Linear and non-linear regression models were used to find the estimates of the parameters necessary to draw the lactation curves. The shape of the lactation curves of different parities showed that third lactation has the heighest peak (43.08 kg) for linear regression model and (42.08 kg) for non-linear regression model. Fourth lactation has the lowest peak (24.00kg) for linear regression model and (25.64 kg) for non-linear regression models. Cows of second and third lactations reached the peak at 58 day for both linear and non-linear regression models. Cows of first lactation were more persistent and had late peak at 68 and 67 days for both models respectively. While, third lactation cows were lower persistent and had early peak at 58 day for both models. Cows calved at winter months have higher starting values (A), higher ascending slope (b) and higher decending slope (c). Least square means of milk yield of the first four parities and for overall data were 6,653, 7,659, 7,482, 6,988 and 7,614 kg respectively. The corresponding lactation period were 358, 367, 350, 363 and 364 days respectively.

Analysis of Multivariate Financial Time Series Using Cointegration : Case Study

  • Choi, M.S.;Park, J.A.;Hwang, S.Y.
    • Journal of the Korean Data and Information Science Society
    • /
    • 제18권1호
    • /
    • pp.73-80
    • /
    • 2007
  • Cointegration(together with VARMA(vector ARMA)) has been proven to be useful for analyzing multivariate non-stationary data in the field of financial time series. It provides a linear combination (which turns out to be stationary series) of non-stationary component series. This linear combination equation is referred to as long term equilibrium between the component series. We consider two sets of Korean bivariate financial time series and then illustrate cointegration analysis. Specifically estimated VAR(vector AR) and VECM(vector error correction model) are obtained and CV(cointegrating vector) is found for each data sets.

  • PDF

Comparsion of Dst forecast models during intense geomagnetic storms (Dst $\leq$ -100 nT)

  • Ji, Eun-Young;Moon, Yong-Jae;Lee, Dong-Hun
    • 천문학회보
    • /
    • 제35권2호
    • /
    • pp.51.2-51.2
    • /
    • 2010
  • We have investigated 63 intense geomagnetic storms (Dst $\leq$ -100 nT) that occurred from 1998 to 2006. Using these events, we compared Dst forecast models: Burton et al. (1975), Fenrich and Luhmann (1998), O'Brien and McPherron (2000a), Wang et al. (2003), and Temerin and Li (2002, 2006) models. For comparison, we examined a linear correlation coefficient, RMS error, the difference of Dst minimum value (${\Delta}$peak), and the difference of Dst minimum time (${\Delta}$peak_time) between the observed and the predicted during geomagnetic storm period. As a result, we found that Temerin and Li model is mostly much better than other models. The model produces a linear correlation coefficient of 0.94, a RMS (Root Mean Square) error of 14.89 nT, a MAD (Mean Absolute Deviation) of ${\Delta}$peak of 12.54 nT, and a MAD of ${\Delta}$peak_time of 1.44 hour. Also, we classified storm events as five groups according to their interplanetary origin structures: 17 sMC events (IP shock and MC), 18 SH events (sheath field), 10 SH+MC events (Sheath field and MC), 8 CIR events, and 10 nonMC events (non-MC type ICME). We found that Temerin and Li model is also best for all structures. The RMS error and MAD of ${\Delta}$peak of their model depend on their associated interplanetary structures like; 19.1 nT and 16.7 nT for sMC, 12.5 nT and 7.8 nT for SH, 17.6 nT and 15.8 nT for SH+MC, 11.8 nT and 8.6 nT for CIR, and 11.9 nT and 10.5 nT for nonMC. One interesting thing is that MC-associated storms produce larger errors than the other-associated ones. Especially, the values of RMS error and MAD of ${\Delta}$peak of SH structure of Temerin and Li model are very lower than those of other models.

  • PDF

On statistical Computing via EM Algorithm in Logistic Linear Models Involving Non-ignorable Missing data

  • Jun, Yu-Na;Qian, Guoqi;Park, Jeong-Soo
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2005년도 추계 학술발표회 논문집
    • /
    • pp.181-186
    • /
    • 2005
  • Many data sets obtained from surveys or medical trials often include missing observations. When these data sets are analyzed, it is general to use only complete cases. However, it is possible to have big biases or involve inefficiency. In this paper, we consider a method for estimating parameters in logistic linear models involving non-ignorable missing data mechanism. A binomial response and normal exploratory model for the missing data are used. We fit the model using the EM algorithm. The E-step is derived by Metropolis-hastings algorithm to generate a sample for missing data and Monte-carlo technique, and the M-step is by Newton-Raphson to maximize likelihood function. Asymptotic variances of the MLE's are derived and the standard error and estimates of parameters are compared.

  • PDF

LuGre Model-Based Neural Network Friction Compensator in a Linear Motor Stage

  • Horng, Rong-Hwang;Lin, Li-Ren;Lee, An-Chen
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제7권2호
    • /
    • pp.18-24
    • /
    • 2006
  • This paper proposes a LuGre Model-Based Neural Network (MBNN) friction compensation algorithm for a linear motor stage. For matching the friction phenomena in both the motion-start region and the motion-reverse region, the LuGre dynamic model is employed into the proposed compensation algorithm. After training of the model-based neural network is completed, the estimated friction for compensation is obtained. From the obtained result we find that the new structure gains advantage over the non-friction compensation system on the performance of the compensator in both regions. The proposed compensator is evaluated and compared experimentally with an uncompensated system on a microcomputer controlled linear motor tracking system in the final section of the paper. The experimental results show the improvement on the maximum velocity error and the root mean square tracking error in the motion-start region ranges from 34% to 53% and from 53% to 75% respectively, and in the motion-reverse region from 48% to 65% and from 79% to 90% respectively.

Multivariable Bayesian curve-fitting under functional measurement error model

  • Hwang, Jinseub;Kim, Dal Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • 제27권6호
    • /
    • pp.1645-1651
    • /
    • 2016
  • A lot of data, particularly in the medical field, contain variables that have a measurement error such as blood pressure and body mass index. On the other hand, recently smoothing methods are often used to solve a complex scientific problem. In this paper, we study a Bayesian curve-fitting under functional measurement error model. Especially, we extend our previous model by incorporating covariates free of measurement error. In this paper, we consider penalized splines for non-linear pattern. We employ a hierarchical Bayesian framework based on Markov Chain Monte Carlo methodology for fitting the model and estimating parameters. For application we use the data from the fifth wave (2012) of the Korea National Health and Nutrition Examination Survey data, a national population-based data. To examine the convergence of MCMC sampling, potential scale reduction factors are used and we also confirm a model selection criteria to check the performance.

TS(Takagi-Sugeno) Fuzzy Model V-type구간 Rational Bezier Curves를 이용한 Approximation개선에 관한 연구 (Approximation Method for TS(Takagi-Sugeno) Fuzzy Model in V-type Scope Using Rational Bezier Curves)

  • 나홍렬;이홍규;홍정화;고한석
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 하계종합학술대회 논문집(3)
    • /
    • pp.17-20
    • /
    • 2002
  • This paper proposes a new 75 fuzzy model approximation method which reduces error in nonlinear fuzzy model approximation over the V-type decision rules. Employing rational Bezier curves used in computer graphics to represent curves or surfaces, the proposed method approximates the decision rule by constructing a tractable linear equation in the highly non-linear fuzzy rule interval. This algorithm is applied to the self-adjusting air cushion for spinal cord injury patients to automatically distribute the patient's weight evenly and balanced to prevent decubitus. The simulation results indicate that the performance of the proposed method is bettor than that of the conventional TS Fuzzy model in terms of error and stability.

  • PDF