• 제목/요약/키워드: Non-linear Numerical model

검색결과 423건 처리시간 0.029초

Non-tubular bonded joint under torsion: Theory and numerical validation

  • Pugno, Nicola;Surace, Giuseppe
    • Structural Engineering and Mechanics
    • /
    • 제10권2호
    • /
    • pp.125-138
    • /
    • 2000
  • The paper analyzes the problem of torsion in an adhesive non-tubular bonded single-lap joint. The joint considered consists of two thin rectangular section beams bonded together along a side surface. Assuming the materials involved to be governed by linear elastic laws, equilibrium and compatibility equations were used to arrive at an integro-differential relation whose solution makes it possible to determine torsional moment section by section in the bonded joint between the two beams. This is then used to determine the predominant stress and strain field at the beam-adhesive interface (stress field along the direction perpendicular to the interface plane, equivalent to the applied torsional moment and the corresponding strain field) and the joint's elastic strain (absolute and relative rotations of the bonded beam cross sections). All the relations presented were obtained in closed form. Results obtained theoretically are compared with those given by a three dimensional finite element numerical model. Theoretical and numerical analysis agree satisfactorily.

합성보의 부착슬립 효과를 고려한 유한요소 기반의 수치해석모델 (FE Based Numerical Model to Consider Bond-slip Effect in Composite Beams)

  • 곽효경;황진욱
    • 한국전산구조공학회논문집
    • /
    • 제23권1호
    • /
    • pp.95-110
    • /
    • 2010
  • 본 논문에서는 합성보의 부착슬립 효과를 고려할 수 있는 유한요소 수치모델을 제안하고자 한다. 전단연결재가 설치된 슬래브와 거더 경계에서 선형 전단력-슬립 관계를 가정하여, 부착슬립 거동을 해석할 수 있는 수치모델이 구현되었다. 본 수치모델을 통하여 축 방향의 자유도를 부가하지 않고 2절점의 보 요소를 적용하여 합성보 경계에서의 슬립 거동을 고려하는 것이 가능하다. 선형 부분전단 연결이론을 토대로 한 슬립 거동의 지배방정식은 슬래브와 거더 경계에서 힘의 평형상태와 단면 내에서 상수로 가정된 곡률을 바탕으로 결정된다. 또한, 지배방정식 구성에 있어서 요소 양 절점에서의 휨 모멘트 값을 필요로 하기 때문에 유한요소 해석으로 도출되는 상수 모멘트를 요소 내에서 선형으로 분포시켰다. 제안된 수치모델을 적용한 해석결과를 기존 연구의 수치해석 결과 및 실험결과와 비교하였으며, 하중-처짐 곡선의 비교를 통하여 본 모델의 성능을 검증하였다.

Three dimensional dynamic soil interaction analysis in time domain through the soft computing

  • Han, Bin;Sun, J.B.;Heidarzadeh, Milad;Jam, M.M. Nemati;Benjeddou, O.
    • Steel and Composite Structures
    • /
    • 제41권5호
    • /
    • pp.761-773
    • /
    • 2021
  • This study presents a 3D non-linear finite element (FE) assessment of dynamic soil-structure interaction (SSI). The numerical investigation has been performed on the time domain through a Finite Element (FE) system, while considering the nonlinear behavior of soil and the multi-directional nature of genuine seismic events. Later, the FE outcomes are analyzed to the recorded in-situ free-field and structural movements, emphasizing the numerical model's great result in duplicating the observed response. In this work, the soil response is simulated using an isotropic hardening elastic-plastic hysteretic model utilizing HSsmall. It is feasible to define the non-linear cycle response from small to large strain amplitudes through this model as well as for the shift in beginning stiffness with depth that happens during cyclic loading. One of the most difficult and unexpected tasks in resolving soil-structure interaction concerns is picking an appropriate ground motion predicted across an earthquake or assessing the geometrical abnormalities in the soil waves. Furthermore, an artificial neural network (ANN) has been utilized to properly forecast the non-linear behavior of soil and its multi-directional character, which demonstrated the accuracy of the ANN based on the RMSE and R2 values. The total result of this research demonstrates that complicated dynamic soil-structure interaction processes may be addressed directly by passing the significant simplifications of well-established substructure techniques.

탄성영역이 없는 J2-경계면 소성모델 (J2-bounding Surface Plasticity Model with Zero Elastic Region)

  • 신호성;오세붕;김재민
    • 대한토목학회논문집
    • /
    • 제43권4호
    • /
    • pp.469-476
    • /
    • 2023
  • 반복하중이나 동적하중에 대한 지반의 소성모델은 지반구조물의 비선형 수치해석에 매우 중요하다. 단일 항복면 모델은 반복하중에 대해 선형적 거동을 보이는 반면, 개발된 탄성영역이 없는 J2-경계면 소성모델은 동일한 물성치로 효과적으로 지반의 비선형성을 모사할 수 있다. 경계면 내부 항복면의 반경을 0으로 수렴시켜 탄성영역이 사라지도록 수식화하고, 소성경화 계수과 팽창률을 이용하여 소성변형 증분을 정의하였다. 개발된 모델의 응력-변형률 증분식을 제시하고, 쌍곡선 모델에 대한 소성경화 계수를 유도하였다. 삼축압축조건과 얕은기초의 반복하중에 대한 비교해석은 개발된 모델의 안정적인 수렴성, 이론식과의 일치성, 그리고 이력경로을 보여 주었다. 또한, 수정된 쌍곡선함수에 대한 소성경화 계수를 제시하여, 1차원 등가선형모델에 부합하는 모델변수 산정법을 제안하여 지반의 다차원 거동을 모델링할 수 있도록 하였다.

Experimental study and numerical investigation of behavior of RC beams strengthened with steel reinforced grout

  • Bencardino, Francesco;Condello, Antonio
    • Computers and Concrete
    • /
    • 제14권6호
    • /
    • pp.711-725
    • /
    • 2014
  • The purpose of this study is to evaluate the behavior and the strength of SRG (Steel Reinforced Grout) externally strengthened Reinforced Concrete (RC) beams by using a nonlinear numerical analysis. The numerical simulation was carried out by using a three-dimensional (3D) finite element model. An interface element with a suitable damage model was used to model the connection between concrete surface and SRG reinforcing layer. The reliability of the finite element 3D-model was checked using experimental data obtained on a set of three RC beams. The parameters taken into consideration were the external configuration, with or without U-end anchorages, the concrete strength, the amount of internal tensile steel reinforcement. Conclusions were made concerning the strength and the ductility of the strengthened beams by varying the parameters and on the effectiveness of the SRG reinforcing system applied with two types of external strengthening configuration.

ATM 다중화 장치에 적용된 추계적 유체흐름 모형의 근사분석 (An Approximate Analysis of a Stochastic Fluid Flow Model Applied to an ATM Multiplexer)

  • 윤영하;홍정식;홍정완;이창훈
    • 한국경영과학회지
    • /
    • 제23권4호
    • /
    • pp.97-109
    • /
    • 1998
  • In this paper, we propose a new approach to solve stochastic fluid flow models applied to the analysis of ceil loss of an ATM multiplexer. Existing stochastic fluid flow models have been analyzed by using linear differential equations. In case of large state space, however. analyzing stochastic fluid flow model without numerical errors is not easy. To avoid this numerical errors and to analyze stochastic fluid flow model with large state space. we develope a new computational algorithm. Instead of solving differential equations directly, this approach uses iterative and numerical method without calculating eigenvalues. eigenvectors and boundary coefficients. As a result, approximate solutions and upper and lower bounds are obtained. This approach can be applied to stochastic fluid flow model having general Markov chain structure as well as to the superposition of heterogeneous ON-OFF sources it can be extended to Markov process having non-exponential sojourn times.

  • PDF

MLR 및 SVR 기반 선형과 비선형회귀분석의 비교 - 풍속 예측 보정 (Comparison of MLR and SVR Based Linear and Nonlinear Regressions - Compensation for Wind Speed Prediction)

  • 김준봉;오승철;서기성
    • 전기학회논문지
    • /
    • 제65권5호
    • /
    • pp.851-856
    • /
    • 2016
  • Wind speed is heavily fluctuated and quite local than other weather elements. It is difficult to improve the accuracy of prediction only in a numerical prediction model. An MOS (Model Output Statistics) technique is used to correct the systematic errors of the model using a statistical data analysis. The Most of previous MOS has used a linear regression model for weather prediction, but it is hard to manage an irregular nature of prediction of wind speed. In order to solve the problem, a nonlinear regression method using SVR (Support Vector Regression) is introduced for a development of MOS for wind speed prediction. Experiments are performed for KLAPS (Korea Local Analysis and Prediction System) re-analysis data from 2007 to 2013 year for Jeju Island and Busan area in South Korea. The MLR and SVR based linear and nonlinear methods are compared to each other for prediction accuracy of wind speed. Also, the comparison experiments are executed for the variation in the number of UM elements.

On the use of numerical models for validation of high frequency based damage detection methodologies

  • Aguirre, Diego A.;Montejo, Luis A.
    • Structural Monitoring and Maintenance
    • /
    • 제2권4호
    • /
    • pp.383-397
    • /
    • 2015
  • This article identifies and addresses current limitations on the use of numerical models for validation and/or calibration of damage detection methodologies that are based on the analysis of the high frequency response of the structure to identify the occurrence of abrupt anomalies. Distributed-plasticity non-linear fiber-based models in combination with experimental data from a full-scale reinforced concrete column test are used to point out current modeling techniques limitations. It was found that the numerical model was capable of reproducing the global and local response of the structure at a wide range of inelastic demands, including the occurrences of rebar ruptures. However, when abrupt sudden damage occurs, like rebar fracture, a high frequency pulse is detected in the accelerations recorded in the structure that the numerical model is incapable of reproducing. Since the occurrence of such pulse is fundamental on the detection of damage, it is proposed to add this effect to the simulated response before it is used for validation purposes.

Chaotic Response of a Nonlinear Vehicle Model and Elimination of the Chaos

  • Lai, Edmund;Park, Chan-Gook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.106.6-106
    • /
    • 2001
  • In this paper, a four-degree-of-freedom non-linear model is developed to study the dynamic response of vehicle that is caused by the disturbance from the road. The chaotic vibration of the model is investigated with numerical simulation. The model displays complicated dynamic responses including harmonic motions and chaos. It is found that changing of the damping coefficients of the system can eliminate the chaotic response.

  • PDF

열연 조압연공정에 있어서의 평균온도 예측모델 개발 (Development of Prediction Model for Average Temperature in the Roughing Mill)

  • 문창호;박해두
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 제5회 압연심포지엄 신 시장 개척을 위한 압연기술
    • /
    • pp.368-377
    • /
    • 2004
  • A mathematical model was developed for the prediction of the average temperature and RDT(RM Delivery temperature) in a roughing mill. The model consisted of three parts as follows (1) The intermediate numerical model calculated the deformation and heat transfer phenomena in the rolling: region by steady state FEM and the heat transfer phenomena in the interpass region by unsteady state FEM (2) The Off-line prediction model was derived from non-linear regression analysis based on the results of intermediate numerical model considering the various rolling conditions, (3) Using the heat flux in rolling region, temperature profile along thickness direction was calculated. For validation of the presented model, the rolling force per pass and RDT measued in on-line process was compared with those of model and the results showed close agreement with the existing data. In order to demonstrate the effectiveness of the proposed model, the various rolling conditions was tested.

  • PDF