• Title/Summary/Keyword: Non-linear Numerical model

Search Result 423, Processing Time 0.028 seconds

Pre-buckling deflection effects on stability of thin-walled beams with open sections

  • Mohri, F.;Damil, N.;Potier-Ferry, M.
    • Steel and Composite Structures
    • /
    • v.13 no.1
    • /
    • pp.71-89
    • /
    • 2012
  • The paper investigates beam lateral buckling stability according to linear and non-linear models. Closed form solutions for single-symmetric cross sections are first derived according to a non-linear model considering flexural-torsional coupling and pre-buckling deformation effects. The closed form solutions are compared to a beam finite element developed in large torsion. Effects of pre-buckling deflection and gradient moment on beam stability are not well known in the literature. The strength of singly symmetric I-beams under gradient moments is particularly investigated. Beams with T and I cross-sections are considered in the study. It is concluded that pre-buckling deflections effects are important for I-section with large flanges and analytical solutions are possible. For beams with T-sections, lateral buckling resistance depends not only on pre-buckling deflection but also on cross section shape, load distribution and buckling modes. Effects of pre-buckling deflections are important only when the largest flange is under compressive stresses and positive gradient moments. For negative gradient moments, all available solutions fail and overestimate the beam strength. Numerical solutions are more powerful. Other load cases are investigated as the stability of continuous beams. Under arbitrary loads, all available solutions fail, and recourse to finite element simulation is more efficient.

Numerical and Experimental Prediction of Asymmetric Deformation Behavior and Its Setup Model in Plate Rolling (후판 압연공정에서 상·하 비대칭 변형거동의 수치적·실험적 예측 및 설정모델에 관한 연구)

  • Byon, Sang-Min;Lee, Young-Seog;Jun, Eon-Chan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.2
    • /
    • pp.124-129
    • /
    • 2011
  • The thick plate produced by rolling process is used as the basic members of a ship structure. In this paper, we present a setup model to control the asymmetric factors causing plate bending in the upper or lower direction during rolling. A series of finite element analysis are conducted to predict the relationship between various asymmetric factors and plate bending. The setup model is developed by regressing the relationship to the linear equations with several non-dimensional parameters. The setup model is verified by a pilot rolling test and applied to actual rolling conditions. Results show that the model is substantial to predict the asymmetric deformation in the plate rolling process.

Potential side-NSM strengthening approach to enhance the flexural performance of RC beams: Experimental, numerical and analytical investigations

  • Md. Akter, Hosen; Mohd Zamin, Jumaat;A.B.M. Saiful, Islam;Khalid Ahmed, Al Kaaf;Mahaad Issa, Shammas;Ibrahim Y., Hakeem;Mohammad Momeen, Ul Islam
    • Structural Engineering and Mechanics
    • /
    • v.85 no.2
    • /
    • pp.179-195
    • /
    • 2023
  • The performance of reinforced concrete (RC) beam specimens strengthened using a newly proposed Side Near Surface Mounted (S-NSM) technology was investigated experimentally in this work. In addition, analytical and nonlinear finite element (FE) modeling was exploited to forecast the performance of RC members reinforced with S-NSM utilizing steel bars. Five (one control and four strengthened) RC beams were evaluated for flexural performance under static loading conditions employing four-point bending loads. Experimental variables comprise different S-NSM reinforcement ratios. The constitutive models were applied for simulating the non-linear material characteristics of used concrete, major, and strengthening reinforcements. The failure load and mode, yield and ultimate strengths, deflection, strain, cracking behavior as well as ductility of the beams were evaluated and discussed. To cope with the flexural behavior of the tested beams, a 3D non-linear FE model was simulated. In parametric investigations, the influence of S-NSM reinforcement, the efficacy of the S-NSM procedure, and the structural response ductility are examined. The experimental, numerical, and analytical outcomes show good agreement. The results revealed a significant increase in yield and ultimate strengths as well as improved failure modes.

2-D Axisymmetric Non-linear Finite Strain Consolidation Model Considering Self-weight Consolidation of Dredged Soil (준설매립지반의 자중압밀을 고려한 2차원 축대칭 비선형 유한변형 압밀 모델)

  • Kwak, Tae-Hoon;Lee, Dong-Seop;Lim, Jee-Hee;Stark, T.D.;Choi, Eun-Seok;Choi, Hang-Seok
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.8
    • /
    • pp.5-19
    • /
    • 2012
  • Vertical drains along with the preloading technique have been commonly used to enhance the consolidation rate of dredged placement formation. In practice, vertical drains are usually installed in the process of self-weight consolidation of a dredged soil deposit because this process takes considerable time to be completed, which makes conventional analytical or numerical models difficult to quantify the consolidation behavior. In this paper, we propose a governing partial differential equation and develop a numerical model for 2-D axisymmetric non-linear finite strain consolidation considering self-weight consolidation to predict the behavior of a vertical drain in the dredged placement foundation which is installed during the self-weight consolidation. In order to verify the developed model in this paper, results of the numerical analysis are compared with that of the lab-scaled self-weight consolidation test. In addition, the model verification has been carried out by comparing with the simplified method. The comparisons show that the developed model can properly simulate the consolidation of the dredged placement formation with the vertical drains installed during the self-weight consolidation. Finally, the effect of construction schedule of vertical drains and of pre-loading during the self-weight consolidation is examined by simulating an imaginary dredged material placement site with a thickness of 10 m and 20 m, respectively. This simulation infers the applicability of the proposed method in this research for designing a soil improvement in a soft dredged deposit when vertical drains and pre-loading are implemented before the self-weight consolidation ceases.

Bayesian Curve-Fitting in Semiparametric Small Area Models with Measurement Errors

  • Hwang, Jinseub;Kim, Dal Ho
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.4
    • /
    • pp.349-359
    • /
    • 2015
  • We study a semiparametric Bayesian approach to small area estimation under a nested error linear regression model with area level covariate subject to measurement error. Consideration is given to radial basis functions for the regression spline and knots on a grid of equally spaced sample quantiles of covariate with measurement errors in the nested error linear regression model setup. We conduct a hierarchical Bayesian structural measurement error model for small areas and prove the propriety of the joint posterior based on a given hierarchical Bayesian framework since some priors are defined non-informative improper priors that uses Markov Chain Monte Carlo methods to fit it. Our methodology is illustrated using numerical examples to compare possible models based on model adequacy criteria; in addition, analysis is conducted based on real data.

An effective stiffness model for RC flexural members

  • Balevicius, Robertas
    • Structural Engineering and Mechanics
    • /
    • v.24 no.5
    • /
    • pp.601-620
    • /
    • 2006
  • The paper presents an effective stiffness model for deformational analysis of reinforced concrete cracked members in bending throughout the short-term loading up to the near failure. The method generally involves the analytical derivation of an effective moment of inertia based on the smeared crack technique. The method, in a simplified way, enables us to take into account the non linear properties of concrete, the effects of cracking and tension stiffening. A statistical analysis has shown that proposed technique is of adequate accuracy of calculated and experimental deflections data provided for beams with small, average and normal reinforcement ratios.

Compare Seismic Coefficient Method and Seismic Response Analysis for Slope during Earthquake (지진시 사면안정해석에 있어서의 진도법과 지진응답해석의 결과 비교)

  • 박성진;오병현;박춘식;황성춘
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.193-200
    • /
    • 2000
  • Numerical analysis of slope stability is presented using slice method, static seismic analysis methods, and earthquake response analysis methods. Static seismic force is considered as 0.2g while vertical static seismic force is not considered in analysis. For earthquake response analysis, Hachinohe-wave is applied. Safety factor calculated using slice method for failure surface. Calculating methods are Bishop's method and Janhu's method. Static seismic analysis was applied using Mhor-Coulomb model and earthquake response analysis was applied using non-linear elastic model.

  • PDF

EFFECT OF MATURATION AND GESTATION DELAYS IN A STAGE STRUCTURE PREDATOR PREY MODEL

  • Banerjee, Sandip;Mukhopadhyay, B.;Bhattacharyya, R.
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.5_6
    • /
    • pp.1379-1393
    • /
    • 2010
  • In this paper, a stage-structured predator prey model (stage structure on prey) with two discrete time delays has been discussed. The two discrete time delays occur due to maturation delay and gestation delay. Linear stability analysis for both non-delay as well as with delays reveals that certain thresholds have to be maintained for coexistence. Numerical simulation shows that the system exhibits Hopf bifurcation, resulting in a stable limit cycle.

CALCULATION METHODS OF SOLAR ATMOSPHERIC MODEL (태양대기모델 계산법)

  • KIM KAP-SUNG
    • Publications of The Korean Astronomical Society
    • /
    • v.15 no.spc2
    • /
    • pp.65-71
    • /
    • 2000
  • We have investigated the numerical methods to calculate model atmosphere for the analysis of spectral lines emitted from the sun and stars. Basic equations used in our calculations are radiative transfer, statistical equilibrium and charge-particle conservations. Transfer equation has been solved to get emitting spectral line profile as an initial value problem using Adams-Bashforth-Moulton method with accuracy as high as 12th order. And we have calculated above non linear differential equations simultaneously as a boundary value problem by finite difference method of 3 points approximation through Feautrier elimination scheme. It is found that all computing programs coded by above numerical methods work successfully for our model atmosphere.

  • PDF

Hindcasting of Storm Surge at Southeast Coast by Typhoon Maemi

  • KAWAI HIROYASU;KIM DO-SAM;KANG YOON-KOO;TOMITA TAKASHI;HIRAISHI TETSUYA
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.2 s.63
    • /
    • pp.12-18
    • /
    • 2005
  • Typhoon Maemi landed on the southeast coast of Korea and caused a severe storm surge in Jinhae Bay and Masan Bay. The tide gage in Masan Port recorded the storm surge of a maximum of more than 2m and the area of more than 700m from the Seo Hang Wharf was flooded by the storm surge. They had not met such an extremely severe storm surge since the opening of the port. Then storm surge was hindcasted with a numerical model. The typhoon pressure was approximated by Myers' empirical model and super gradient wind around the typhoon eye wall was considered in the wind estimation. The land topography surrounding Jinhae Bay and Masan Bay is so complex that the computed wind field was modified with the 3D-MASCON model. The motion of seawater due to the atmospheric forces was simulated using a one-layer model based on non-linear long wave approximation. The Janssen's wave age dependent drag coefficient on the sea surface was calculated in the wave prediction model WAM cycle 4 and the coefficient was inputted to the storm surge model. The result shows that the storm surge hindcasted by the numerical model was in good agreement with the observed one.