• Title/Summary/Keyword: Non-linear Function

Search Result 823, Processing Time 0.029 seconds

Large amplitude free vibrations of FGM shallow curved tubes in thermal environment

  • Babaei, Hadi;Kiani, Yaser;Eslami, M. Reza
    • Smart Structures and Systems
    • /
    • v.25 no.6
    • /
    • pp.693-705
    • /
    • 2020
  • In the current investigation, large amplitude free vibration behavior of shallow curved pipes (tubes) made of functionally graded materials is investigated. Properties of the tube are distributed across the radius of the tube and are obtained by means of a power law function. It is also assumed that all thermo-mechanical properties are temperature dependent. The governing equations of the tube are obtained using a higher order shear deformation tube theory, where the traction free boundary conditions are satisfied on the top and bottom surfaces of the tube. The von Kármán type of geometrical non-linearity is included into the formulation to consider the large displacements and small strains. Uniform temperature elevation of the tube is also included into the formulation. For the case of tubes which are simply supported in flexure and axially immovable, the governing equations are solved using the two-step perturbation technique. Closed form expressions are provided to obtain the small and large amplitude fundamental natural frequencies of the FGM shallow curved tubes in thermal environment. Numerical results are given to explore the effects of thermal environment, radius ratio, and length to thickness ratio of the tube on the fundamental linear and non-linear frequencies.

A PDFF Position Control using Non-linear Compensator (비선형 보상기를 이용한 PDFF 위치제어)

  • 안영주;이형기
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.3 no.4
    • /
    • pp.49-56
    • /
    • 2002
  • In this paper, a new controller using non-linear compensator for position control is presented, which we can satisfy the given specifications more easily than the existing one. We suggest an improved PDFE(Integral with Proportional-Derivative-plus-Feedforward) controller by which both phase margin and bandwidth are controlled simultaneously in the controller design problem. Replacing the feed forward term in the PDFF system with a CDIDF(Complex Dual Input Describing Function), the desired phase margin is obtained without diminishing the bandwidth of the closed loop system. The effectiveness of the proposed controller is confirmed through simulations and experiments. As The results of these, we know that it is possible to adjust overall specifications by varying parameters in the improved PDFF system.

  • PDF

A Study on the Performance Analysis of the PV-AF System under various Irradiation Conditions (다양한 일사량 조건에서의 PV-AF 시스템의 특성에 관한 연구)

  • Seo, Hyo-Ryong;Kim, Kyung-Hun;Park, Min-Won;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.212-213
    • /
    • 2007
  • Grid-connected PV(Photovoltaic) power generation system has experienced increasing attention in recent years. But the growing number of non-linear equipments, such as, inverters, has been demanding the compensation for the disturbances caused by them. These non-linear loads may cause poor power factor and high degree of harmonics. Installation of an AF(active filter) can be one of the solutions to mitigate the line distortion, but it requires additional costs. On the other hand, many PV systems have been interconnected to the distribution system. So, the PV system combined with the function of the active filter system can be useful for the application in the power distribution system. In this paper, PV-AF system using DSP (Digital Signal Processing) controller confirmed that it is possible to combine the AF theory to the three phase PV system connected to the utility under various irradiation conditions.

  • PDF

Large Signal Determination of Non-Linear Output Capacitance of Gallium-Nitride Field Effect Transistors from Switch-Off Voltage Transients - A Numerical Method

  • Pentz, David;Joannou, Andrea
    • Journal of Power Electronics
    • /
    • v.18 no.6
    • /
    • pp.1912-1919
    • /
    • 2018
  • The output capacitance of power semiconductor devices is important in determining the switching losses and in the operation of some resonant converter topologies. Thus, it is important to be able to accurately determine the output capacitance of a particular device operating at elevated power levels so that the contribution of the output capacitance discharge to switch-on losses can be determined under these conditions. Power semiconductor switch manufacturers usually measure device output capacitance using small-signal methods that may be insufficient for power switching applications. This paper shows how first principle methods are applied in a novel way to obtain more relevant large signal output capacitances of Gallium-Nitride (GaN) FETs using the drain-source voltage transient during device switch-off numerically. A non-linear capacitance for an increase in voltage is determined with good correlation. Simulations are verified using experimental results from two different devices. It is shown that the large signal output capacitance as a function of the drain-source voltage is higher than the small signal values published in the data sheets for each of the devices. It can also be seen that the loss contribution of the output capacitance discharging in the channel during switch-on correlates well with other methods proposed in the literature, which confirms that the proposed method has merit.

Optimization of structural and mechanical engineering problems using the enriched ViS-BLAST method

  • Dizangian, Babak;Ghasemi, Mohammad Reza
    • Structural Engineering and Mechanics
    • /
    • v.77 no.5
    • /
    • pp.613-626
    • /
    • 2021
  • In this paper, an enhanced Violation-based Sensitivity analysis and Border-Line Adaptive Sliding Technique (ViS-BLAST) will be utilized for optimization of some well-known structural and mechanical engineering problems. ViS-BLAST has already been introduced by the authors for solving truss optimization problems. For those problems, this method showed a satisfactory enactment both in speed and efficiency. The Enriched ViS-BLAST or EVB is introduced to be vastly applicable to any solvable constrained optimization problem without any specific initialization. It uses one-directional step-wise searching technique and mostly limits exploration to the vicinity of FNF border and does not explore the entire design space. It first enters the feasible region very quickly and keeps the feasibility of solutions. For doing this important, EVB groups variables for specifying the desired searching directions in order to moving toward best solutions out or inside feasible domains. EVB was employed for solving seven numerical engineering design problems. Results show that for problems with tiny or even complex feasible regions with a larger number of highly non-linear constraints, EVB has a better performance compared to some records in the literature. This dominance was evaluated in terms of the feasibility of solutions, the quality of optimum objective values found and the total number of function evaluations performed.

The clustering of critical points in the evolving cosmic web

  • Shim, Junsup;Codis, Sandrine;Pichon, Christophe;Pogosyan, Dmitri;Cadiou, Corentin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.47.2-47.2
    • /
    • 2021
  • Focusing on both small separations and baryonic acoustic oscillation scales, the cosmic evolution of the clustering properties of peak, void, wall, and filament-type critical points is measured using two-point correlation functions in ΛCDM dark matter simulations as a function of their relative rarity. A qualitative comparison to the corresponding theory for Gaussian random fields allows us to understand the following observed features: (i) the appearance of an exclusion zone at small separation, whose size depends both on rarity and signature (i.e. the number of negative eigenvalues) of the critical points involved; (ii) the amplification of the baryonic acoustic oscillation bump with rarity and its reversal for cross-correlations involving negatively biased critical points; (iii) the orientation-dependent small-separation divergence of the cross-correlations of peaks and filaments (respectively voids and walls) that reflects the relative loci of such points in the filament's (respectively wall's) eigenframe. The (cross-) correlations involving the most non-linear critical points (peaks, voids) display significant variation with redshift, while those involving less non-linear critical points seem mostly insensitive to redshift evolution, which should prove advantageous to model. The ratios of distances to the maxima of the peak-to-wall and peak-to-void over that of the peak-to-filament cross-correlation are ~2-√~2 and ~3-√~3WJ, respectively, which could be interpreted as the cosmic crystal being on average close to a cubic lattice. The insensitivity to redshift evolution suggests that the absolute and relative clustering of critical points could become a topologically robust alternative to standard clustering techniques when analysing upcoming surveys such as Euclid or Large Synoptic Survey Telescope (LSST).

  • PDF

Large deflection analysis of orthotropic thin circular plates using differential quadrature (미분구적법을 이용한 직교이방성 원판의 대변형 해석)

  • 이영신;박복선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.2
    • /
    • pp.387-395
    • /
    • 1991
  • Large deflection behavior of cylindrically orthotropic thin circular plates is investigated by the numerical technique of differential quadrature. Governing equations are derived in terms of transverse deflection and stress function and a Newton-Raphson technique is used to solve the nonlinear systems of equations. For small values of degree of differential quadrature (N.leq.13), as the degree of differential quadrature increases, the center deflection converges. However, as N increases further, the center deflection diverges by ill-conditioning in the weighting coefficients. As the orthotropic parameter increases, the center deflection decreases and behaves linear for the loads. At center, the stress is affected mainly by orthotropic parameter, while the stress is affected mainly by boundary condition at edge.

Adaptive Contrast Stretching for Land Observation in Cloudy Low Resolution Satellite Imagery

  • Lee, Hwa-Seon;Lee, Kyu-Sung
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.3
    • /
    • pp.287-296
    • /
    • 2012
  • Although low spatial resolution satellite images like MODIS and GOCI can be important to observe land surface, it is often difficult to visually interpret the imagery because of the low contrast by prevailing cloud covers. We proposed a simple and adaptive stretching algorithm to enhance image contrast over land areas in cloudy images. The proposed method is basically a linear algorithm that stretches only non-cloud pixels. The adaptive linear stretch method uses two values: the low limit (L) from image statistics and upper limit (U) from low boundary value of cloud pixels. The cloud pixel value was automatically determined by pre-developed empirical function for each spectral band. We used MODIS and GOCI images having various types of cloud distributions and coverage. The adaptive contrast stretching method was evaluated by both visual interpretation and statistical distribution of displayed brightness values.

The Estimation Method Comparison of Iron Loss Coefficients through the Iron Loss Calculation

  • Kim, Yong-Tae;Cho, Gyu-Won;Kim, Gyu-Tak
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1409-1414
    • /
    • 2013
  • A new calculation method for iron loss coefficients is proposed by using the Steinmetz equation from Epstein data. The hysteresis loss must have linear characteristic according to the frequency. However, the existing iron loss coefficients are defined by formula of frequency. In this case, the hysteresis loss has non-linear characteristics by frequency. So, in this paper, the iron loss coefficients were defined by a function of the magnetic flux density, and the iron loss calculation is applied for Interior Permanent Magnet Synchronous Motor(IPMSM) of 600(W) and 200(W). The iron loss calculation results and the experimental results are compared according to the various materials.

A Study on Flood Prediction without Rainfall Data (강우 데이터를 쓰지 않는 홍수예측법에 관한 연구)

  • 김치홍
    • Journal of the Korean Professional Engineers Association
    • /
    • v.18 no.2
    • /
    • pp.1-5
    • /
    • 1985
  • In the flood prediction research, it is pointed out that the difficulty of flood prediction is the frequently experienced overestimation of flood peak. That is caused by the rainfall prediction difficulty and the nonlinearity of hydrological phenomena. Even though the former reason will remain still unsolved, but the latter one can be possibly resolved the method of the AMRA (Auto Regressive Moving Average) model for each runoff component as developed by Dr. Hino and Dr. Hasebe. The principle of the method consists of separating though the numerical filters the total runoff time series into long-term, intermediate and short-term components, or ground water flow, interflow, and surface flow components. As a total system, a hydrological system is a non-linear one. However, once it is separated into two or three subsystems, each subsystem may be treated as a linear system. Also the rainfall components into each subsystem a estimated inversely from the runoff component which is separated from the observed flood. That is why flood prediction can be done without rainfall data. In the prediction of surface flow, the Kalman filter will be applicable but this paper shows only impulse function method.

  • PDF