• Title/Summary/Keyword: Non-linear Function

Search Result 823, Processing Time 0.032 seconds

Efficient buffeting analysis under non-stationary winds and application to a mountain bridge

  • Su, Yanwen;Huang, Guoqing;Liu, Ruili;Zeng, Yongping
    • Wind and Structures
    • /
    • v.32 no.2
    • /
    • pp.89-104
    • /
    • 2021
  • Non-synoptic winds generated by tornadoes, downbursts or gust fronts exhibit significant non-stationarity and can cause significant wind load effect on flexible structures such as long-span bridges. However, conventional assumptions on stationarity used to evaluate the structural wind-induced vibration are inadequate. In this paper, an efficient frequency domain scheme based on fast CQC method, which can predict non-stationary buffeting random responses of long-span bridges, is presented, and then this approach is applied to evaluate the buffeting response of a long-span suspension bridge located in a complex mountainous wind environment as an example. In this study, the data-driven method based on one available measured wind speed sample is firstly presented to establish non-stationary wind models, including time-varying mean wind speed, time-varying intensity envelope function and uniformly modulated fluctuating spectrum. Then, a linear time-variant (LTV) system based on the proposed scheme can be generally applied to calculate the non-stationary buffeting responses. The effectiveness and accuracy of the proposed scheme are verified through Monte Carlo time domain simulation implemented in ANSYS platform. Also, the transient effect nature of the bridge responses is further illustrated by comparison of the non-stationary, quasistationary and steady-state cases. Finally, buffeting response analysis with traditional stationary treatment (10 min constant mean plus stationary wind fluctuation) is performed to illustrate the importance of the non-stationary characteristics embedded in original wind speed samples.

Software Cost Estimation Model Based on Use Case Points by using Regression Model (회귀분석을 이용한 UCP 기반 소프트웨어 개발 노력 추정 모델)

  • Park, Ju-Seok;Yang, Hea-Sool
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.8
    • /
    • pp.147-157
    • /
    • 2009
  • Recently, there has been continued research on UCP from the development effort estimation method to a software development project applying object oriented development methodology. Current research proposes a linear model estimating the developmenteffort by multiplying a constant to AUCP which applies technical and environmental factors. However, the fact that a non-linear regression model is more appropriate as the software size increases, the development period increases exponentially. In addition, in the UCP calculation process the occurrence of FP errors due to the application of TCF and EF, it is unrealistic to estimate the size with AUCP. This paper presents the issue of current research based on UCP without considering problems of the research, for example, TCF and EF and expresses the models (linear, logarithmic, polynomial, power and exponential type) estimating the development effort directly from UUCP. Consequently, the exponential model within non-linear models exhibit more accurate results than the current linear model. Therefore, after calculating the UUCP of the developing software system, using the proposed model to estimate the development effort, it is possible to estimate the direct cost required in development.

Design and Analysis of Linear Span of A New Family of Non-linear Binary Sequences with 5-Valued Cross-Correlation Functions (5-값 상호상관관계를 갖는 새로운 비선형 이진수열군의 설계와 선형스팬 분석)

  • Choi, Un-Sook;Cho, Sung-Jin;Kim, Han-Doo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.3
    • /
    • pp.619-626
    • /
    • 2013
  • The design of PN(Pseudo Noise) sequences with good cross-correlation properties is important for many research areas in communication systems. In this paper we propose new family of binary sequences $S^r=\{Tr_1^m\{[Tr_m^n(a{\alpha}^t+{\alpha}^{dt})]^r\}{\mid}a{\in}GF(2^n),\;0{\leq}t<2^n-1\}$ composed of Gold-like sequences and find the value of cross-correlation function when $d=2^{n-1}(3{\cdot}2^m-1)$, where n=2k, gcd(r, $2^m-1$)=1. Also we analyze the linear span of $S^r$ for some special r. Proposed sequences are extension of Gold-like sequences and GMW-sequences.

A Globally Stabilizing Model Predictive Controller for Neutrally Stable Linear Systems with Input Constraints

  • Yoon, Tae-Woong;Kim, Jung-Su;Jadbabaie, Ali;Persis, Claudio De
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1901-1904
    • /
    • 2003
  • MPC or model predictive control is representative of control methods which are able to handle physical constraints. Closed-loop stability can therefore be ensured only locally in the presence of constraints of this type. However, if the system is neutrally stable, and if the constraints are imposed only on the input, global aymptotic stability can be obtained; until recently, use of infinite horizons was thought to be inevitable in this case. A globally stabilizing finite-horizon MPC has lately been suggested for neutrally stable continuous-time systems using a non-quadratic terminal cost which consists of cubic as well as quadratic functions of the state. The idea originates from the so-called small gain control, where the global stability is proven using a non-quadratic Lyapunov function. The newly developed finite-horizon MPC employs the same form of Lyapunov function as the terminal cost, thereby leading to global asymptotic stability. A discrete-time version of this finite-horizon MPC is presented here. The proposed MPC algorithm is also coded using an SQP (Sequential Quadratic Programming) algorithm, and simulation results are given to show the effectiveness of the method.

  • PDF

The Selection of Measurement Positions for BEM Based NAH Using a Non-conformal Hologram to Reduce the Reconstruction Error

  • Oey, Agustinus;Ih, Jeong-Guon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1018-1021
    • /
    • 2007
  • This paper explores the use of BEM based NAH to reconstruct the surface vibration of a plate in a rectangular finite cavity, in which the distances between sensors and the nearest points on the source surface are not equal. In such circumstances, different degree of information on propagating and non-propagating wave components will be detected by sensors at different positions, as well as the influence of measurement noise will vary significantly from the nearest points of measurement to the farthest ones. On the other hand, the condition number of the vibro-acoustic transfer function matrix relating normal surface velocities and field pressures will becomes high, numerically indicating an increase of linear dependency between rows of transfer function matrix. The combination of poor measurement and high condition number will result inaccurate reconstruction. Therefore, one approach to be investigated in this work is to select the measurement positions in such ways that reduce measurement redundancy, as it indicated by the condition number. The improvement is found to be significant in the numerical simulations utilizing two different criterions, spanning from over-determined to under-determined cases, and in the validation experiment.

  • PDF

A semi-active stochastic optimal control strategy for nonlinear structural systems with MR dampers

  • Ying, Z.G.;Ni, Y.Q.;Ko, J.M.
    • Smart Structures and Systems
    • /
    • v.5 no.1
    • /
    • pp.69-79
    • /
    • 2009
  • A non-clipped semi-active stochastic optimal control strategy for nonlinear structural systems with MR dampers is developed based on the stochastic averaging method and stochastic dynamical programming principle. A nonlinear stochastic control structure is first modeled as a semi-actively controlled, stochastically excited and dissipated Hamiltonian system. The control force of an MR damper is separated into passive and semi-active parts. The passive control force components, coupled in structural mode space, are incorporated in the drift coefficients by directly using the stochastic averaging method. Then the stochastic dynamical programming principle is applied to establish a dynamical programming equation, from which the semi-active optimal control law is determined and implementable by MR dampers without clipping in terms of the Bingham model. Under the condition on the control performance function given in section 3, the expressions of nonlinear and linear non-clipped semi-active optimal control force components are obtained as well as the non-clipped semi-active LQG control force, and thus the value function and semi-active nonlinear optimal control force are actually existent according to the developed strategy. An example of the controlled stochastic hysteretic column is given to illustrate the application and effectiveness of the developed semi-active optimal control strategy.

근전도신호를 이용한 노약자/장애인용 재활 보조시스템의 인터페이스기법

  • 장영건;신철규;이은실;권장우;홍승홍
    • Proceedings of the ESK Conference
    • /
    • 1997.04a
    • /
    • pp.107-113
    • /
    • 1997
  • In this paper, an interfacing method to control rehabilitation assitance system with bio-signal is proposed. Controlling with EMG signals method has certain advantage on signal-collecting, but has some drawbacks in the function resolution of EMG signals because data-processing process is not efficient. To improve function-resolution and to increase the efficiency of EMG signal interfacing with rehabilitation assistance system, Multi-layer Perception which is highly effective with static signal and hidden-Markov model for dynamic signal resolving are fused together. In proposed method. The direction and average speed of the rehabilitation assitance system are controlled by the trajectory control and estimation of the moving direction result from the fused model. From the experiment, proposed GMM and 2-level MLP hybrid-classifier yielded 8.6% perception-error rate, improving function resolution. New acceleration control method constructed with 3 nested linear filter produced continuous acceleration paths without the information of destination point. Thus, the mass output caused by non- continuous acceleration-deceleration was eliminated. In the simulation, the necessary calculation, in the case of multiplication, was reduced by 11.54%.

  • PDF

Estimation of entropy of the inverse weibull distribution under generalized progressive hybrid censored data

  • Lee, Kyeongjun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.3
    • /
    • pp.659-668
    • /
    • 2017
  • The inverse Weibull distribution (IWD) can be readily applied to a wide range of situations including applications in medicines, reliability and ecology. It is generally known that the lifetimes of test items may not be recorded exactly. In this paper, therefore, we consider the maximum likelihood estimation (MLE) and Bayes estimation of the entropy of a IWD under generalized progressive hybrid censoring (GPHC) scheme. It is observed that the MLE of the entropy cannot be obtained in closed form, so we have to solve two non-linear equations simultaneously. Further, the Bayes estimators for the entropy of IWD based on squared error loss function (SELF), precautionary loss function (PLF), and linex loss function (LLF) are derived. Since the Bayes estimators cannot be obtained in closed form, we derive the Bayes estimates by revoking the Tierney and Kadane approximate method. We carried out Monte Carlo simulations to compare the classical and Bayes estimators. In addition, two real data sets based on GPHC scheme have been also analysed for illustrative purposes.

Design of a Swing-arm Actuator using the Compliant Mechanism - Multi-objective Optimal Design Considering the Stiffness Effect (컴플라이언트 메커니즘을 이용한 스윙 암 액추에이터의 설계 - 강성 효과를 고려한 다중목적 최적화 설계 -)

  • Lee Choong-yong;Min Seungjae;Yoo Jeonghoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.2 s.245
    • /
    • pp.128-134
    • /
    • 2006
  • Topology optimization is an effective scheme to obtain the initial design concept: however, it is hard to apply in case of non-linear or multi-objective problems. In this study, a modified topology optimization method is proposed to generate a structure of a swing arm type actuator satisfying maximum compliance as well. as maximum stiffness using the multi-objective optimization. approach. The multi-objective function is defined to maximize the compliance in the direction of focusing of the actuator and the second eigen-frequency of the structure. The design of experiments are performed and the response surface functions are formulated to construct the multi-objective function. The weighting factors between conflicting functions are determined by the back-error propagation neural network and the solution of multi-objective function is acquired using the genetic algorithm.

GAUSSIAN QUADRATURE FORMULAS AND LAGUERRE-PERRON@S EQUATION

  • HAJJI S. EL;TOUIJRAT L.
    • Journal of applied mathematics & informatics
    • /
    • v.18 no.1_2
    • /
    • pp.205-228
    • /
    • 2005
  • Let I(f) be the integral defined by : $I(f) = \int\limits_{a}^{b} f(x)w(x)dx$ with f a given function, w a nonclassical weight function and [a, b] an interval of IR (of finite or infinite length). We propose to calculate the approximate value of I(f) by using a new scheme for deriving a non-linear system, satisfied by the three-term recurrence coefficients of semi-classical orthogonal polynomials. Finally we studies the Stability and complexity of this scheme.