• Title/Summary/Keyword: Non-linear Function

Search Result 823, Processing Time 0.028 seconds

Analysis of Complex Forced Raleigh Scattering Decay Profiles for the Diffusion of Methyl Yellow in Binary Solution

  • 박하선;성정문;이현정;장태현;Daniel R. Spiegal
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.9
    • /
    • pp.1006-1010
    • /
    • 1997
  • The nature and analysis methods of complicated decay profiles found in forced Rayleigh scattering (FRS) have been investigated for the probe diffusion of methyl yellow in 2-propanol. The complementary shifted and ground state grating effect, which is known to be the origin of non-single exponential decays, was analyzed by non-linear regression fitting to a double exponential model function. We confirmed that the parameters were highly correlated so that it was difficult to extract a unique set of parameters in the presence of experimental noise. Nevertheless, a reasonable range of decay time constants could be estimated from the grating spacing dependence.

Bias corrected non-response estimation using nonparametric function estimation of super population model (선형 응답률 모형에서 초모집단 모형의 비모수적 함수 추정을 이용한 무응답 편향 보정 추정)

  • Sim, Joo-Yong;Shin, Key-Il
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.6
    • /
    • pp.923-936
    • /
    • 2021
  • A large number of non-responses are occurring in the sample survey, and various methods have been developed to deal with them appropriately. In particular, the bias caused by non-ignorable non-response greatly reduces the accuracy of estimation and makes non-response processing difficult. Recently, Chung and Shin (2017, 2020) proposed an estimator that improves the accuracy of estimation using parametric super-population model and response rate model. In this study, we suggested a bias corrected non-response mean estimator using a nonparametric function generalizing the form of a parametric super-population model. We confirmed the superiority of the proposed estimator through simulation studies.

Direct Torque Control Scheme of Switched Reluctance Motor using Novel Torque Sharing Function (토크분배함수를 이용한 SRM의 적접토크제어기법)

  • Ahn, Jin-Woo;Lee, Dong-Hee;Kim, Tae-Hyoung;Liang, Jianing
    • Proceedings of the KIEE Conference
    • /
    • 2007.10c
    • /
    • pp.138-140
    • /
    • 2007
  • A novel non-linear logical torque sharing function (TSF) is presented. To improve efficiency and to reduce torque ripple in commutation region, only a phase torque under commutation is regulated to produce a uniform torque. And the torque developed by the other phase remains with the previous state under a current limit of the motor and drive. If the minimum change of a phase torque reference can not satisfy the total reference torque, two-phase changing mode is used. Since a phase torque is constant and the other phase torque is changed at each rotor position, total torque error can be reduced within a phase torque error limit. And the total torque error is dependent on the change of phase torque. To consider non-linear torque characteristics and to suppress a tail current at the end of commutation region, the incoming phase current is changed to torque increasing direction, but the outgoing phase current is changed to torque decreasing direction. So, the torque sharing of the outgoing phase and incoming phase can be smoothly changed with a minimum current cross over. The proposed control scheme is verified by some computer simulations and experimental results.

  • PDF

The Use of Particle Swarm Optimization for Order Allocation Under Multiple Capacitated Sourcing and Quantity Discounts

  • Ting, Ching-Jung;Tsai, Chi-Yang;Yeh, Li-Wen
    • Industrial Engineering and Management Systems
    • /
    • v.6 no.2
    • /
    • pp.136-145
    • /
    • 2007
  • The selection of suppliers and the determination of order quantities to be placed with those suppliers are important decisions in a supply chain. In this research, a non-linear mixed integer programming model is presented to select suppliers and determine the order quantities. The model considers the purchasing cost which takes into account quantity discount, the cost of transportation, the fixed cost for establishing suppliers, the cost for holding inventory, and the cost of receiving poor quality parts. The capacity constraints for suppliers, quality and lead-time requirements for the parts are also taken into account in the model. Since the purchasing cost, which is a decreasing step function of order quantities, introduces discontinuities to the non-linear objective function, it is not easy to employ traditional optimization methods. Thus, a heuristic algorithm, called particle swarm optimization (PSO), is used to find the (near) optimal solution. However, PSO usually generates initial solutions randomly. To improve the PSO solution quality, a heuristic procedure is proposed to find an initial solution based on the average unit cost including transportation, purchasing, inventory, and poor quality part cost. The results show that PSO with the proposed initial solution heuristic provides better solutions than those with PSO algorithm only.

Identification of Volterra Kernels of Nonlinear System Having Backlash Type Nonlinearity

  • Rong, Li;Kashiwagi, H.;Harada, H.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.141-144
    • /
    • 1999
  • The authors have recently developed a new method for identification of Volterra kernels of nonlinear systems by use of pseudorandom M-sequence and correlation technique. And it is shown that nonlinear systems which can be expressed by Volterra series expansion are well identified by use of this method. However, there exist many nonlinear systems which can not be expressed by Volterra series mathematically. A nonlinear system having backlash type nonliear element is one of those systems, since backlash type nonlinear element has multi-valued function between its input and output. Since Volterra kernel expression of nonlinear system is one of the most useful representations of non-linear dynamical systems, it is of interest how the method of Volterra kernel identification can be ar plied to such backlash type nonlinear system. The authors have investigated the effect of application of Volterra kernel identification to those non-linear systems which, accurately speaking, is difficult to express by use of Volterra kernel expression. A pseudorandom M-sequence is applied to a nonlinear backlash-type system, and the crosscorrelation function is measured and Volterra kernels are obtained. The comparison of actual output and the estimated output by use of measured Volterra kernels show that we can still use Volterra kernel representation for those backlash-type nonlinear systems.

  • PDF

Information Arrival between Price Change and Trading Volume in Crude Palm Oil Futures Market: A Non-linear Approach

  • Go, You-How;Lau, Wee-Yeap
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.3 no.3
    • /
    • pp.79-91
    • /
    • 2016
  • This paper is the first of its kind using a non-linear approach based on cross-correlation function (CCF) to investigate the information arrival hypothesis in crude palm oil (CPO) futures market. Based on daily data from 1986 to 2010, our empirical results reveal that: First, the volume of volatility is not a proxy of information flow. Second, dependence causality running from current return to future volume in conditional variance exhibit an asymmetric pattern of time span with different signs of correlation between price and volume series. This finding indicates the presence of noise traders' hypothesis of price-volume interaction in CPO futures market. Both findings suggest that this futures market is weak-form inefficiency. In terms of investors' behavior, they tend to change their expectations on current return based on errors made in previous trade in generating abnormal volume in the subsequent period. As implied, it is advisable for the investors devise their future trading strategies according to time span and changes of return.

One-Handled The Mobile One-Time Password Scheme (단일 제어 모바일 일회용 패스워드 기법)

  • Choi, Jong-Seok;Kim, Ho-Won
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.6C
    • /
    • pp.497-501
    • /
    • 2012
  • While increasing online services with developing e-businesses, finance, game companies and others have employed OTP(One-Time Password) to overcome vulnerabilities of static passwords. Existing OTP technology has inconvenience that customers always possess reserved token since requiring the token to generate OTP. In order to supplement the issue we propose mobile OTP generated by mobile devices such as smart phones. Our mobile OTP scheme generates OTP by using a non-linear function based on pairing to eject the collision problem of S/Key scheme universally used to design OTP schemes. Our scheme based on a non-linear function over pairing can complements the collision problem and widely applied to finance and various services to increase security level of the services.

Composites Fatigue Life Evaluation based on non-linear fatigue damage model (비선형 피로손상 모델을 이용한 복합재 피로수명 평가)

  • 김성준;황인희
    • Composites Research
    • /
    • v.16 no.1
    • /
    • pp.13-18
    • /
    • 2003
  • Prediction of composite fatigue life is not a straightforward matter, depending on various failure modes and their interactions. In this paper, a methodology is presented to predict fatigue life and residual strength of composite materials based on Phenomenological Model(non-linear fatigue damage model). It is assumed that the residual strength is a monotonically decreasing function of the number of loading cycles and applied fatigue stress ratio and the model parameters(strength degradation parameter and fatigue shape parameter) are assumed as function of fatigue life. Then S-N curve is used to extract model parameters that are required to characterize the stress levels comprising a randomly-ordered load spectrum. Different stress ratios (${\sigma}_{min}/{\;}{\sigma}_{max}$) are handled with Goodman correction approach(fatigue envelope) and the residual strength after an arbitrary load cycles is represented by two parameter weibull functions.

Inter-vehicular Distance Estimation Scheme Based on VLC using Image Sensor and LED Tail Lamps in Moving Situation (후미등의 가시광통신을 이용한 이동상황에서의 영상센서 기반 차량 간 거리 추정 기법)

  • Yun, Soo-Keun;Jeon, Hui-Jin;Kim, Byung Wook;Jung, Sung-Yoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.6
    • /
    • pp.935-941
    • /
    • 2017
  • This paper proposes a method for estimating the distance betweeen vehicles in a moving situation using the image ratio of the distance between the tail lamps of a front vehicle. The actual distance between the tail lamps of a front vehicle was transmitted by LED tail lamps using visible light communication. As the distance between the front vehicle and the rear vehicle changes, it calculates the ratio of the pixel width between the tail lamps of the front vehicle projected on the image. The calculated values are used to derive a distance-mapping function through non-linear regression technique. Then, the distance between vehicles in the moving situation is estimated based on this function.

Vibration analysis and optimization of functionally graded carbon nanotube reinforced doubly-curved shallow shells

  • Hammou, Zakia;Guezzen, Zakia;Zradni, Fatima Z.;Sereir, Zouaoui;Tounsi, Abdelouahed;Hammou, Yamna
    • Steel and Composite Structures
    • /
    • v.44 no.2
    • /
    • pp.155-169
    • /
    • 2022
  • In the present paper an analytical model was developed to study the non-linear vibrations of Functionally Graded Carbon Nanotube (FG-CNT) reinforced doubly-curved shallow shells using the Multiple Scales Method (MSM). The nonlinear partial differential equations of motion are based on the FGM shallow shell hypothesis, the non-linear geometric Von-Karman relationships, and the Galerkin method to reduce the partial differential equations associated with simply supported boundary conditions. The novelty of the present model is the simultaneous prediction of the natural frequencies and their mode shapes versus different curvatures (cylindrical, spherical, conical, and plate) and the different types of FG-CNTs. In addition to combining the vibration analysis with optimization algorithms based on the genetic algorithm, a design optimization methode was developed to maximize the natural frequencies. By considering the expression of the non-dimensional frequency as an objective optimization function, a genetic algorithm program was developed by valuing the mechanical properties, the geometric properties and the FG-CNT configuration of shallow double curvature shells. The results obtained show that the curvature, the volume fraction and the types of NTC distribution have considerable effects on the variation of the Dimensionless Fundamental Linear Frequency (DFLF). The frequency response of the shallow shells of the FG-CNTRC showed two types of nonlinear hardening and softening which are strongly influenced by the change in the fundamental vibration mode. In GA optimization, the mechanical properties and geometric properties in the transverse direction, the volume fraction, and types of distribution of CNTs have a considerable effect on the fundamental frequencies of shallow double-curvature shells. Where the difference between optimized and not optimized DFLF can reach 13.26%.