• Title/Summary/Keyword: Non-linear Effect

Search Result 988, Processing Time 0.029 seconds

Implementation of Adaptive Shading Correction System Supporting Multi-Resolution for Camera

  • Ha, Joo-Young;Song, Jin-Geun;Im, Jeong-Uk;Min, Kyoung-Joong;Kang, Bong-Soon
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2006.06a
    • /
    • pp.25-28
    • /
    • 2006
  • In this paper, we say the shading correction system supporting multi-resolution for camera. The shading effect is caused by non-uniform illumination, non-uniform camera sensitivity, or even dirt and dust on glass (lens) surfaces. In general this shading effect is undesirable [1]. Eliminating it is frequently necessary for subsequent processing and especially when quantitative microscopy is the fine goal. The proposed system is available on thirty nine kinds of image resolutions scanned by interlaced and progressive type. Moreover, the system is using various continuous quadratic equations instead of using the piece-wise linear curve which is composed of multiple line segments. Finally, the system could correct the correct effect without discontinuity in any image resolution. The proposed system is also experimentally demonstrated with Xilinx Virtex FPGA XCV2000E- 6BG5560 and the TV set.

  • PDF

A Future Contraction Effect in Intertemporal Choice for Durable Goods

  • Kim, Byung Kyu
    • Asia Marketing Journal
    • /
    • v.20 no.2
    • /
    • pp.29-40
    • /
    • 2018
  • Recent research reported that perception of future time is non-linearly scaled. That is, as objective time gets longer, subjective perception of the objective time does not grow proportionally. The non-linear time perception implies that the same future time feels shorter when it starts in the future than when it starts immediately. The authors call this as a future contraction effect. The current research tests two important implications of the effect regarding consumers' intertemporal preference for durable goods. First, consumers who contract future more will be more impatient for durable goods compared to those who contract less because the former would feel to use the same durable goods longer when it is purchased immediately. Second, consumers' impatience will be alleviated when their tendency to contract future is reduced. The authors find support for these predictions through two studies. Taken together, the current research demonstrates a property of time perception that has important ramifications for understanding consumers' intertemporal preference for durable goods.

Effect of Air Void System of High Strength Concrete on Freezing and Thawing Resistance (고강도콘크리트의 동결융해저항에 미치는 기포조직의 영향)

  • 김생빈
    • Magazine of the Korea Concrete Institute
    • /
    • v.4 no.1
    • /
    • pp.89-96
    • /
    • 1992
  • It is generally known that the frost-resistance of concrete is much affected by the air content in concrete and by the air void system or air distribution. And also the frost-resistance is believed to vary with the stre¬ngth of concrete. This article is prepared to describe, based on experiment, the effect of the air content and the air void system, particularly the effect of the spacing factor, on the freeze-thaw resistance of the high strength conc¬rete. For this purpose, I first worked on Non-AE concrete to make its compressive strength set about 400 to 500 kg/em'. However, the freeze-thaw test on the Non-AE concrete resulted in low durability factor, I.e., 10-2~0%. Thus to enhance the durability, another supplementary step was needed. I used AE admixture. which enhanced durability by changing the air content from 2% to 12%. The frost-thaw test was then performed 500 cycles on the 20 kind of concrete mixtures which differ in unit cement content and in water-cement ratio. Keywords : frost -resistance, air content, air void system, air distribution, spacing factor, freeze-thaw test, dur ability factor. capillary cavity, Linear Traverse Method.

Numerical simulations of localization of deformation in quasi-brittle materials within non-local softening plasticity

  • Bobinski, J.;Tejchman, J.
    • Computers and Concrete
    • /
    • v.1 no.4
    • /
    • pp.433-455
    • /
    • 2004
  • The paper presents results of FE-calculations on shear localizations in quasi-brittle materials during both an uniaxial plane strain compression and uniaxial plane strain extension. An elasto-plastic model with a linear Drucker-Prager type criterion using isotropic hardening and softening and non-associated flow rule was used. A non-local extension was applied in a softening regime to capture realistically shear localization and to obtain a well-posed boundary value problem. A characteristic length was incorporated via a weighting function. Attention was focused on the effect of mesh size, mesh alignment, non-local parameter and imperfections on the thickness and inclination of shear localization. Different methods to calculate plastic strain rates were carefully discussed.

The Concept and Analysis of Redundant Information in Space Perception - Focused on the Works of NOX - (공간지각에 있어 잉여정보의 의미와 분석 - NOX의 공간을 중심으로-)

  • Kim, Joo-Mi
    • Korean Institute of Interior Design Journal
    • /
    • v.15 no.6 s.59
    • /
    • pp.77-88
    • /
    • 2006
  • According to critics and architects, non-linear structure is not only an organic form of space, but also a form of space detached from modem style. Accordingly, non-linear structure can be accepted as an alternative to what has remained unsolved by deconstructionist. However, they are criticized for not clarifying the interdependent relationship between non-linearity of space and cognitive structure of human being. They ended up remaining the hypothesis just an intuitive and abstract one. This research began on the basis that their hypothesis is hard to be objectified, and it needs further inquiry. The purpose of this thesis is to explore how the redundant factors constitute non-linear structures of digital media centered space design. Geometric compositions of space structure were analyzed to define what types of redundant factors are contrived in the process of visual information. This study about the visual form, researching the Information Theory, and then offer a quantitative analysis that makes those more objective. Space structure and geometric composition were analyzed to define what types of redundancy are contrived in the process of visual information. In particular, I put higher theoretical emphasis on what characteristics are ensued in the process of structuring spaces than any other subjects. Followings are the conclusion of analysis. First, as a result of examining, we can assume that NOX' space structure is not a chaotic form, but has an operating the form of its own. Second, in case of curvilinear, the structure was found redundancy on mid deviation ratio and discontinuous circular fabric. Although most of their structures appeared complex with a higher coherent constant, they were found to be stable factors because of the low deviation ratio between systems. The amount of surplus information was stable structure as well.

Evaluation of Equivalent-Static Floor Acceleration for Seismic Design of Non-Structural Elements (비구조요소의 내진설계를 위한 등가정적 층가속도 평가)

  • Jun, Su-Chan;Lee, Cheol-Ho;Bae, Chang-Jun;Kim, Sung-Yong
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.36 no.3
    • /
    • pp.121-128
    • /
    • 2020
  • In this paper, the ASCE 7 equivalent static approach for seismic design of non-structural elements is critically evaluated based on the measured floor acceleration data, theory of structural dynamics, and linear/nonlinear dynamic analysis of three-dimensional building models. The analysis of this study on the up-to-date database of the instrumented buildings in California clearly reveals that the measured database does not well corroborate the magnitude and the profile of the floor acceleration as proposed by ASCE 7. The basic flaws in the equivalent static approach are illustrated using elementary structural dynamics. Based on the linear and nonlinear dynamic analyses of three-dimensional case study buildings, it is shown that the magnitude and distribution of the PFA (peak floor acceleration) can significantly be affected by the supporting structural characteristics such as fundamental period, higher modes, structural nonlinearity, and torsional irregularity. In general, the equivalent static approach yields more conservative acceleration demand as building period becomes longer, and the PFA distribution in long-period buildings tend to become constant along the building height due to the higher mode effect. Structural nonlinearity was generally shown to reduce floor acceleration because of its period-lengthening effect. Torsional floor amplification as high as 250% was observed in the building model of significant torsional irregularity, indicating the need for inclusion of the torsional amplification to the equivalent static approach when building torsion is severe. All these results lead to the conclusion that, if permitted, dynamic methods which can account for supporting structural characteristics, should be preferred for rational seismic design of non-structural elements.

Single-step genomic evaluation for growth traits in a Mexican Braunvieh cattle population

  • Jonathan Emanuel Valerio-Hernandez;Agustin Ruiz-Flores;Mohammad Ali Nilforooshan;Paulino Perez-Rodriguez
    • Animal Bioscience
    • /
    • v.36 no.7
    • /
    • pp.1003-1009
    • /
    • 2023
  • Objective: The objective was to compare (pedigree-based) best linear unbiased prediction (BLUP), genomic BLUP (GBLUP), and single-step GBLUP (ssGBLUP) methods for genomic evaluation of growth traits in a Mexican Braunvieh cattle population. Methods: Birth (BW), weaning (WW), and yearling weight (YW) data of a Mexican Braunvieh cattle population were analyzed with BLUP, GBLUP, and ssGBLUP methods. These methods are differentiated by the additive genetic relationship matrix included in the model and the animals under evaluation. The predictive ability of the model was evaluated using random partitions of the data in training and testing sets, consistently predicting about 20% of genotyped animals on all occasions. For each partition, the Pearson correlation coefficient between adjusted phenotypes for fixed effects and non-genetic random effects and the estimated breeding values (EBV) were computed. Results: The random contemporary group (CG) effect explained about 50%, 45%, and 35% of the phenotypic variance in BW, WW, and YW, respectively. For the three methods, the CG effect explained the highest proportion of the phenotypic variances (except for YW-GBLUP). The heritability estimate obtained with GBLUP was the lowest for BW, while the highest heritability was obtained with BLUP. For WW, the highest heritability estimate was obtained with BLUP, the estimates obtained with GBLUP and ssGBLUP were similar. For YW, the heritability estimates obtained with GBLUP and BLUP were similar, and the lowest heritability was obtained with ssGBLUP. Pearson correlation coefficients between adjusted phenotypes for non-genetic effects and EBVs were the highest for BLUP, followed by ssBLUP and GBLUP. Conclusion: The successful implementation of genetic evaluations that include genotyped and non-genotyped animals in our study indicate a promising method for use in genetic improvement programs of Braunvieh cattle. Our findings showed that simultaneous evaluation of genotyped and non-genotyped animals improved prediction accuracy for growth traits even with a limited number of genotyped animals.

Behavior of Columns Due to Variation of Performance Influencing Factors Based on Performance Based Design (성능기반설계에 기초한 성능영향인자 변화에 따른 기둥의 거동분석)

  • Yun, Sung-Hwan;Choi, Min-Choul;Kang, Yoon-Sig;Park, Tae-Hyo
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.4
    • /
    • pp.489-498
    • /
    • 2010
  • The performance evaluation of reinforcement concrete structure is carried out as a function of the following performance influencing factors: (1) the strength of concrete, (2) longitudinal reinforcement, (3) transverse reinforcement, (4) aspect ratio, and (5) axial force. With various values of the five parameters, eigenvalue analysis and non-linear static analysis were performed to investigate the structural yield displacement, yield basis shear force, and static performance of ductility ratio. In addition, the performance evaluation is carried out according to the modified capacity spectrum method (FEMA-440) using the results of non-linear static analysis, and the effect of each parameter on performance point is analyzed. Based on the result of eigenvalue analysis and non-linear static analysis indicates, that the natural period and the ductility ratio are affected more by the structural properties than the material properties. In case of the analysis of the criterion of performance points, the effect of section shape is one of the important factors together with natural period and ductility ratio.

PARAMETER IDENTIFICATION FOR NONLINEAR VISCOELASTIC ROD USING MINIMAL DATA

  • Kim, Shi-Nuk
    • Journal of applied mathematics & informatics
    • /
    • v.23 no.1_2
    • /
    • pp.461-470
    • /
    • 2007
  • Parameter identification is studied in viscoelastic rods by solving an inverse problem numerically. The material properties of the rod, which appear in the constitutive relations, are recovered by optimizing an objective function constructed from reference strain data. The resulting inverse algorithm consists of an optimization algorithm coupled with a corresponding direct algorithm that computes the strain fields given a set of material properties. Numerical results are presented for two model inverse problems; (i)the effect of noise in the reference strain fields (ii) the effect of minimal reference data in space and/or time data.

Study on Structural Integrity of Bearingless Main Rotor Hub System of Helicopter (헬리콥터 무베이링 메인 로터 허브 시스템의 구조 건전성에 관한 연구)

  • Lee, Mu-Hyoung;Park, Ill-Kyoung;Kim, Sung-Joon;Hwang, In-Hee;Kim, Tae-Joo
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.20 no.4
    • /
    • pp.50-56
    • /
    • 2012
  • Rotor system is a very important part which produce lift, thrust and control force in helicopter. Component of rotor system must have structural integrity for applied load. The estimation of structural integrity is regarded greatly as important in aerospace field. In this study, the process of structural analysis performed for bearingless main rotor system of helicopter. The composite flexbeam and torque tube of bearingless main rotor are very thick, so 3D layered soild elements of MSC.PATRAN were used to get the finite element analysis results. To estimate structural integrity, non-linear static analysis considering geometric non-linearity is performed. In addition, detailed finete element analysis and non-linear static analysis are performed to consider the stress concentration for fitting effect and contact surface. The estimation process of structural integrity for bearingless main rotor system of helicopter may help the design.