• Title/Summary/Keyword: Non-linear Effect

Search Result 983, Processing Time 0.028 seconds

A Study on Cooling Conditions of a Linear Motor used in an Exposer for the Manufacturing LCD (LCD 제조용 노광기에 사용되는 리니어 모터의 냉각조건에 대한 연구)

  • Yang, Hong Cheon;Lee, Young Nam;Kim, Kwang Sun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.11 no.4
    • /
    • pp.31-36
    • /
    • 2012
  • The high thrust of the linear motor in the exposer generates the high temperature heat by the friction and the electromagnetic forces on its coil. It can cause the thermal deformation and the accuracy of the equipment is finally decreased which has a bad effect on the productivity. In this research, the heat and flow on the linear motor of the exposer has been analyzed. The existing equipment is non-contact fluid refrigerant type. The numerical analysis data of the existing equipment have been acquired and the reliability of the data has been verified. The revised modeling for the next-generation is suggested for cooling the exposer effectively.

A simple panel zone model for linear analysis of steel moment frames

  • Saffari, Hamed;Morshedi, Esmaeil
    • Steel and Composite Structures
    • /
    • v.35 no.4
    • /
    • pp.579-598
    • /
    • 2020
  • Consideration of the panel zone (PZ) deformations in the analysis of steel moment frames (SMFs) has a substantial effect on structural response. One way to include the PZ effect on the structural response is Krawinkler's PZ model, which is one of the best and conventional models. However, modeling of Krawinkler's PZ model has its complexity, and finding an alternative procedure for PZ modeling is of interest. In this study, an efficient model is proposed to simplify Krawinkler's PZ model into an Adjusted Rigid-End Zone (AREZ). In this way, the rigid-end-zone dimensions of the beam and column elements are defined through an appropriate rigid-end-zone factor. The dimensions of this region depend on the PZ stiffness, beam(s) and columns' specifications, and connection joint configuration. Thus, to obtain a relationship for the AREZ model, which yields the dimensions of the rigid-end zone, the story drift of an SMF with Krawinkler's PZ model is equalized with the story drift of the same structure with the AREZ model. Then, the degree of accuracy of the resulting relationship is examined in several connections of generic SMFs. Also, in order to demonstrate the applicability of the proposed model in SMFs, several SMFs ranging from 3- to 30-story representing low- to high-rise buildings are examined through linear static and dynamic time history analysis. Furthermore, non-linear dynamic analyses of three SMFs conducted to validate the degree of accuracy of the proposed model in the non-linear analysis of SMFs. Analytical results show that there is considerable conformity between inter-story drift ratio (IDR) results of the SMFs with Krawinkler's PZ model and those of the centerline SMFs with AREZ.

On the large amplitude free vibrations of axially loaded Euler-Bernoulli beams

  • Bayat, Mahmoud;Pakar, Iman;Bayat, Mahdi
    • Steel and Composite Structures
    • /
    • v.14 no.1
    • /
    • pp.73-83
    • /
    • 2013
  • In this paper Hamiltonian Approach (HA) have been used to analysis the nonlinear free vibration of Simply-Supported (S-S) and for the Clamped-Clamped (C-C) Euler-Bernoulli beams fixed at one end subjected to the axial loads. First we used Galerkin's method to obtain an ordinary differential equation from the governing nonlinear partial differential equation. The effect of different parameter such as variation of amplitude to the obtained on the non-linear frequency is considered. Comparison of HA with Runge-Kutta 4th leads to highly accurate solutions. It is predicted that Hamiltonian Approach can be applied easily for nonlinear problems in engineering.

Non-Linear dynamic pulse buckling of laminated composite curved panels

  • Keshav, Vasanth;Patel, Shuvendu N.
    • Structural Engineering and Mechanics
    • /
    • v.73 no.2
    • /
    • pp.181-190
    • /
    • 2020
  • In this paper, non-linear dynamic buckling behaviour of laminated composite curved panels subjected to dynamic in-plane axial compressive loads is studied using finite element methods. The work is carried out using the finite element software ABAQUS. The curved panels are modelled with S4R element and the nonlinear dynamic equilibrium equations are solved using the ABAQUS/Explicit algorithm. The effect of aspect ratio, radius of curvature and thickness are studied. The importance of orientation of plies in the direction of loading is also reiterated in this study. Vol'mir's criterion is used to calculate the dynamic buckling loads. The panels are subjected to rectangular pulse load of various amplitude and durations and the responses are observed. For particular loading amplitude, a critical value of loading duration is observed beyond which the variation of dynamic buckling load is insignificant. It is also observed that, the value of dynamic bucking load reduces as the loading duration is increased though the reduction is not much after a particular loading duration.

Computation of Non-Linear Wave Height Distribution in the Seogwipo Harbor Using Finite Element Method

  • Kim, Nam-Hyeong;Hur, Young-Teck;Young, Yin-Lu
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.6
    • /
    • pp.32-37
    • /
    • 2003
  • In this paper, finite element method is applied for the numerical analysis of wave height distribution. The mild-slope equation is used as the basic equation. The key of this model is to impose the effect of nonlinear waves. Numerical results are presented and agreed well with the results from experimental measurements and other numerical analysis. The present method to determine wave height distribution can be broadly utilized for the analysis of new harbor and port designs in the future.

Harmonic Analysis of Reactor and Capacitor in Single-tuned Harmonic Filter Application

  • Kim, Jong-Gyeum;Park, Young-Jeen;Lee, Dong-Ju
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.239-244
    • /
    • 2011
  • Industrial power distribution system includes many kinds of non-linear loads, which produce the harmonics during energy conversion transition. The single-tuned passive filter is widely used to absorb the harmonics and attenuate its undesirable effect in the distribution system. However, the passive filter might be severely stressed, and sometimes even damaged, due to the absorption of harmonics. There is voltage rise on the capacitor when the single-turned harmonic filter is applied. When the capacitor voltage rose above the allowable limit, the expected life of the capacitor will considerably deteriorate. On the other hand, the reactor can experience the spike voltage even if the voltage and current of the capacitor are within the allowable limit, and this accumulated voltage stress of the reactor causes its premature fault. In this paper, we analyzed and compared the harmonic voltage and current of the reactor and capacitor in a single-tuned harmonic filter through the EMTP software and verified them with the experimental results.

Electric-Field-Induced Strain Properties of Multi Layer Ceramic Actuator Using PMN-PZ-PT Ceramics (PMN-PZ-PT 세라믹스를 이용한 적층형 액츄에이터의 변위특성)

  • Ha, Mun-Su;Jeong, Soon-Jong;Koh, Jung-Hyuk;Song, Jae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.620-623
    • /
    • 2003
  • Non-linear behaviors of multilayer piezoelectric ceramic actuator (MCA) were investigated under electrical and mechanical stress. DC 100 V bias was applied to the MCA to obtain displacement. Laser vibrometer, which using Doppler effect, was employed to characterize displacement caused by $d_{33}$ mode of MCA. To understand this non-linear behavior of MCA, displacement was measured and compared under different load states. By increasing load, electric field-induced strain and piezoelectric constant($d_{33}$) of MCA was decreased. We attribute this phenomenon to the domain wall motion and depoling of MCA under heavy load.

  • PDF

Dynamic Modeling Method for Beams Undergoing Overall Rigid Body Motion Considering Two Geometric Non-linear Effects (두 기하학적 비선형 효과들을 고려한 대변위 강체운동을 하는 보의 동적 모델링 방법)

  • Kim, Na-Eun;Yoo, Hong-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.6
    • /
    • pp.1014-1019
    • /
    • 2003
  • A dynamic modeling method for beams undergoing overall rigid body motion is presented in this paper. Two special deformation variables are introduced to represent the stretching and the curvature and are approximated by the assumed mode method. Geometric constraint equations that relate the two special deformation variables and the cartesian deformation variables are incorporated into the modeling method. By using the special deformation variables, all natural as well as geometric boundary conditions can be satisfied. It is shown that the geometric nonlinear effects of stretching and curvature play important roles to accurately predict the dynamic response when overall rigid body motion is involved.

Non-linear Optical Properties of the Langmuir-Blodgett Films Measured by the Differential Attenuated Total Reflection Method (미분 변조 전반사 감쇠법에 의해 측정된 Langmuir-Blodgett 박막의 비선형 광학적 성질)

  • 정미윤
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1991.06a
    • /
    • pp.94-97
    • /
    • 1991
  • We have deposited the three kinds of the Langmuir-Blodgett films (Phenylhy drazone, O-stilbazene, N-stilbazene) which have optically nonlinear effect. To study the electro-optic characteristics of these LB films, we performed the differential attenuated total reflection experiment in which the optical properties of the LB films modulated by the electric field(νE = 1KHz). The surface non-linear susceptibilities $\chi$(2) of these LB films obtained, are 1.17$\times$10-10 (m/V), 36.3$\times$10-10 (m/V), and 1.62$\times$10-10 (m/V) for Phenylhydrazone, O-stilbazene, and N-stilbazene, respectively.

  • PDF

3D Non-linear Analysis of Interlaminar Stress around the Hole Edge of Orthotropic Laminates (직교이방성 적층판의 Hole단부의 3D 비선형 층간응력 해석)

  • SONG KWAN-HYUNG
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.5
    • /
    • pp.36-42
    • /
    • 2004
  • Orthotropic laminates, such as [$0^{\circ}6$/$90^{\circ}6$]s and [$90^{\circ}6$/$0^{\circ}6$]s, were performed, using a commercial nonlinear finite element method. Interlaminar stress distributions, around the hole curve free-edge, were calculated. The delamination bearing strengths of pin joints were predicted, using the modified delamination failure criterion. These stress distributions were presented along the radial lines and around the free-edge of the hole. Further, three-dimensional non-linear contact analysis of orthotropic laminates was conducted to investigate the effect of friction. In this paper, laminates with a circular hole were taken to study interlaminar stresses the curved edge. This study may assist in the design of a thick composite laminate with mechanically pin joints.