• Title/Summary/Keyword: Non-line-of-sight communication

Search Result 46, Processing Time 0.017 seconds

A hybrid model of regional path loss of wireless signals through the wall

  • Xi, Guangyong;Lin, Shizhen;Zou, Dongyao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.9
    • /
    • pp.3194-3210
    • /
    • 2022
  • Wall obstruction is the main factor leading to the non-line of sight (NLoS) error of indoor localization based on received signal strength indicator (RSSI). Modeling and correcting the path loss of the signals through the wall will improve the accuracy of RSSI localization. Based on electromagnetic wave propagation theory, the reflection and transmission process of wireless signals propagation through the wall is analyzed. The path loss of signals through wall is deduced based on power loss and RSSI definition, and the theoretical model of path loss of signals through wall is proposed. In view of electromagnetic characteristic parameters of the theoretical model usually cannot be accurately obtained, the statistical model of NLoS error caused by the signals through the wall is presented based on the log-distance path loss model to solve the parameters. Combining the statistical model and theoretical model, a hybrid model of path loss of signals through wall is proposed. Based on the empirical values of electromagnetic characteristic parameters of the concrete wall, the effect of each electromagnetic characteristic parameters on path loss is analyzed, and the theoretical model of regional path loss of signals through the wall is established. The statistical model and hybrid model of regional path loss of signals through wall are established by RSSI observation experiments, respectively. The hybrid model can solve the problem of path loss when the material of wall is unknown. The results show that the hybrid model can better express the actual trend of the regional path loss and maintain the pass loss continuity of adjacent areas. The validity of the hybrid model is verified by inverse computation of the RSSI of the extended region, and the calculated RSSI is basically consistent with the measured RSSI. The hybrid model can be used to forecast regional path loss of signals through the wall.

A Study on Improvement of Broadband Radio Channel Characteristics using Linear Adaptive Equalizer (선형 적응 등화기 적용에 의한 광대역 무선채널 특성 개선에 관한 연구)

  • 윤영석;하덕호
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.4 no.1
    • /
    • pp.211-218
    • /
    • 2000
  • This paper describes the improvement of broadband radio channel characteristics using a MMSE adaptive equalization technique as a fundamental study of high transmission rates in indoor radio channel. First, the performance of 16-QAM system that employs a MMSE linear adaptive equalizer in Rayleigh fading channel is analyzed. Next, in order to improve broadband radio channel characteristics, we apply an adaptive equalization technique employing the MMSE algorithm to the radio channel measured by using circularly polarized antenna under indoor NLOS(non-line-of sight) environment. Consequently, for 16-QAM with adaptive equalizer, we can achieve the improvement of about 13 dB at $10^{-3}$ error rate as compared with general 16-QAM. Moreover, it was found that the adaptive equalization technique could improve broadband radio channel characteristics over the all measured areas. Also, it was found that the employing both adaptive equalization and polarization diversity technique together could improve broadband radio channel characteristics and reduce fading more effectively.

  • PDF

Topology-aware Packet Size and Forward Rate for Energy Efficiency and Reliability in Dynamic Wireless Body Area Networks (동적 무선 인체 통신망의 에너지 효율과 신뢰성을 위한 토폴로지 인식 기반 패킷 크기 및 포워딩 비율 결정 방법)

  • Nguyen-Xuan, Sam;Kim, Dongwan;An, Sunshin
    • Journal of Internet Computing and Services
    • /
    • v.15 no.2
    • /
    • pp.9-18
    • /
    • 2014
  • The sensors attached on/in a person are moved since human body frequency changes their activity, therefore in wireless body area networks, nodal mobility and non-line-of-sight condition will impact on performance of networks such as energy efficiency and reliable communication. We then proposed schemes which study on forwarding decisions against frequent change of topology and channel conditions to increase reliable connections and improve energy efficiency. In this work, we control the size of packets, forwarding rate based on ratio of input links and output links at each node. We also robust the network topology by extending the peer to peer IEEE 802.15.4-based. The adaptive topology from chain-based to grid-based can optimal our schemes. The simulation shows that these approaches are not only extending network lifetime to 48.2 percent but also increase around 6.08 percent the packet delivery ratio. The "hot spots" problem is also resolved with this approach.

Performance Verification of a New Positioning Technology by Low-Resolution CDMA Pilot Strength Measurements (저해상도 CDMA Pilot 신호세기를 활용한 새로운 측위기법의 성능 검증)

  • Lee, Hyung Keun;Shim, Ju-Young;Kim, Hee-Sung
    • Journal of Advanced Navigation Technology
    • /
    • v.11 no.2
    • /
    • pp.154-162
    • /
    • 2007
  • This paper verifies the performance of the wireless-signal map-matching (WSMM) method that is recently proposed to mitigate the effects of non-line-of-sight (NLOS) error in positioning under wireless terrestrial network environments. The WSMM method is the new positioning technology that estimates and compensate the NLOS errors by processing the bulks of anonymous measurements at unknown locations that are collected randomly and automatically. The WSMM method would be advantageous for various configurations of future ubiquitous sensor networks since it is based on the existing network configuration for communication and it requires no additional hardware in base stations and mobile handsets. It is shown that the application of the WSMM concept to the real CDMA pilot strength measurment message (PSMM) actually mitigates the NLOS error effects and improves overall positioning accuracy.

  • PDF

3D Node Deployment and Network Configuration Methods for Improvement of Node Coverage and Network Connectivity (커버리지와 네트워크 연결성 향상을 위한 3차원 공간 노드 배치 및 망 구성 방법)

  • Kim, Yong-Hyun;Kim, Lee-Hyeong;Ahn, Mirim;Chung, Kwangsue
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37B no.9
    • /
    • pp.778-786
    • /
    • 2012
  • Sensors that are used on wireless sensor networks can be divided into two types: directional sensors, such as PIR, image, and electromagnetic sensors; and non-directional sensors, such as seismic, acoustic and magnetic sensors. In order to guarantee the line-of-sight of a directional sensor, the installation location of the sensor must be higher than ground level. Among non-directional sensors, seismic sensors should be installed on the ground in order to ensure the maximal performance. As a result, seismic sensors may have network connectivity problems due to communication failure. In this paper, we propose a 3D node deployment method to maximize the coverage and the network connectivity considering the sensor-specific properties. The proposed method is for non-directional sensors to be placed on the ground, while the directional sensor is installed above the ground, using trees or poles, to maximize the coverage. As a result, through the topology that the detection data from non-directional sensors are transmitted to the directional sensor, we can maximize the network connectivity. Simulation results show that our strategy improves sensor coverage and network connectivity.

Location Accuracy Analysis and Accuracy Improvement Method of Pattern Matching Algorithm Using Database Construction Algorithm (패턴매칭 알고리즘의 측위 성능 분석 및 데이터베이스 구축 알고리즘을 이용한 정확도 향상 방법)

  • Ju, Yeong-Hwan;Park, Yong-Wan
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.4
    • /
    • pp.86-94
    • /
    • 2009
  • Currently, positioning methods for LBS(Location Based Service) are GPS and network-based positioning techniques that use mobile communication networks. In these methods, however, the accuracy of positioning decreases due to the propagation delay caused by the non-line-of-sight(NLOS) effect and the repeater. To address this disadvantage, the CDMA system uses Pattern Matching algorithm. The Pattern Matching algorithm constructs a database of the propagation characteristics of the RF signals measured during the GPS positioning along with the positioned locations, so that the location can be provided by comparing the propagation characteristics of the received signals and the database, upon a user's request. In the area where GPS signals are not received, however, a database cannot be constructed. There are problem that the accuracy of positioning decreases due to the area without a database Because Pattern Matching algorithm depend on database existence. Therefore, this paper proposed a pilot signal strength prediction algorithm to enable construction of databases for areas without databases, so as to improve the performance of the Pattern Matching algorithm. The database was constructed by predicting the pilot signals in the area without a database using the proposed algorithm, and the Pattern Matching algorithm analysed positioning performance.