• Title/Summary/Keyword: Non-horizontal error

Search Result 24, Processing Time 0.025 seconds

Inclination and Non-horizontal Error Correction of Magnetic Compass by the Law of Gravity (중력 법칙을 이용한 전자나침반의 경사오차 및 비 수평오차 보정)

  • Park, Gye-Do;Lee, Jang-Myung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.3
    • /
    • pp.606-611
    • /
    • 2011
  • This paper proposes a correction method concerning the inclination error and non-horizontal error of magnetic compass when magnetic compass is vibrated. This system used the 2-axis variable resistance and pendulum. A pendulum hanging from the 2-axis variable resistance of this system is always maintain the horizontal because of gravity. but these data had some intrinsic error. So we used the low pass filter to solve this problem. So this system can get the accurate azimuth of magnetic compass. In conclusion, These results demonstrate convincingly by applied algorithm of experiment.

MULTI-OBJECTIVES FUZZY MODELS FOR DESIGNING 3D TRAJECTORY IN HORIZONTAL WELLS

  • Qian, Weiyi;Feng, Enmin
    • Journal of applied mathematics & informatics
    • /
    • v.15 no.1_2
    • /
    • pp.265-275
    • /
    • 2004
  • In this paper, multi-objective models for designing 3D trajectory of horizontal wells are developed in a fuzzy environment. Here, the objectives of minimizing the length of the trajectory and the error of entry target point are fuzzy in nature. Some parameters, such as initial value, end value, lower bound and upper bound of the curvature radius, tool-face angle and the arc length of each curve section, are also assumed to be vague and imprecise. The impreciseness in the above objectives have been expressed by fuzzy linear membership functions and that in the above parameters by triangular fuzzy numbers. Models have been solved by the fuzzy non-linear programming method based on Zimmermann [1] and Lee and Li [2]. Models are applied to practical design of the horizontal wells. Numerical results illustrate the accuracy and efficiency of the fuzzy models.

Proposal of Modified Correlation to Calculate the Horizontal Global Solar Irradiance for non-Measuring Cloud-cover Regions (운량 비측정 지역을 위한 수평면전일사량 예측 상관식의 수정모델 제안)

  • Cho, Min-Cheol;Kim, Jeongbae
    • Journal of Institute of Convergence Technology
    • /
    • v.6 no.2
    • /
    • pp.29-33
    • /
    • 2016
  • Recently, the authors of this paper proposed newly the correlation model to calculate the horizontal global solar radiation in Korea based the Zhang-Huang (ZH) model proposed in 2002 for China. Previous study was pronounced the correlation with a new term of the duration of sunshine proved as being closely related with the hourly solar radiation in Korea into ZH model. And then another modified correlation for the regions without measuring cloud cover was proposed and evaluated the accuracy and validity for those regions. So, this study was performed to propose modified correlation to calculate the horizontal global solar irradiance of non-measuring cloud-cover regions. Finally, this study proposed the new correlation that could well predict hourly and daily total solar radiation for all regions, various seasons, and various weather conditions including overcast and clear, with higher accuracy and lower error than other models proposed ever before in Korea for non-measuring cloud-cover regions.

Error Analysis of Initial Fine Alignment for Non-leveling INS (경사각을 갖는 관성항법시스템 초기 정밀정렬의 오차 분석)

  • Cho, Seong-Yun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.6
    • /
    • pp.595-602
    • /
    • 2008
  • In this paper, performance of the initial alignment for INS whose attitude is not leveled is investigated. Observability of the initial alignment filter is analyzed and estimation errors of the estimated state variables are derived. First, the observability is analyzed using the rank test of observability matrix and the normalized error covariance of the Kalman filter based on the 10-state model. In result, it can be seen that the accelerometer biases on horizontal axes are unobservable. Second, the steady-state estimation errors of the state variables are derived using the observability equation. It is verified that the estimates of the state variables have errors due to the unobservable state variables and the non-leveling tilt angles of a vehicle containing the INS. Especially, this paper shows that the larger the tilt angles of the vehicle are, the larger the estimation errors corresponding to the sensor biases are. Finally, it is shown that the performance of the 8-state model excepting the accelerometer biases on horizontal axes is better than that of the 10-state model in the initial alignment by simulation.

Dual Foot-PDR System Considering Lateral Position Error Characteristics

  • Lee, Jae Hong;Cho, Seong Yun;Park, Chan Gook
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.1
    • /
    • pp.35-44
    • /
    • 2022
  • In this paper, a dual foot (DF)-PDR system is proposed for the fusion of integration (IA)-based PDR systems independently applied on both shoes. The horizontal positions of the two shoes estimated from each PDR system are fused based on a particle filter. The proposed method bounds the position error even if the walking time increases without an additional sensor. The distribution of particles is a non-Gaussian distribution to express the lateral error due to systematic drift. Assuming that the shoe position is the pedestrian position, the multi-modal position distribution can be fused into one using the Gaussian sum. The fused pedestrian position is used as a measurement of each particle filter so that the position error is corrected. As a result, experimental results show that position of pedestrians can be effectively estimated by using only the inertial sensors attached to both shoes.

SCARA robot calibration on off-line programming (오프라인 프로그래밍에서 스카라 로봇의 보정)

  • Jung, Sung-Woo;Son, Kwon;Lee, Min-Chul;Choi, Jae-Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1832-1835
    • /
    • 1997
  • Off-line programming systems are widely spread in assembly lines of minute electronic products to huge offshore structures. Any OLP system has to be calibrated before the on-line robot tasks are performed because there are inherent differences between the CAD model on OLP and the real robot workspace. This paper uses simple geometric expressions to propose a calibration method applicable to an OLP for SCARA robots. A positioning task on the two-dimensional horizontal surface was used in the error analysis of a SCARA robot and the anaysis shows that the inaccuracy results from the two error sources non-zero offset angles of two rotational joints at the zero return and differences in link lengths. Pen marks on a sheet of plotting paper are used to determine the accurate data on the joint centers and link dimensions. The calculated offset angles and link lengths are fed back to the OLP for the calibration of the CAD model of the robot and task environments.

  • PDF

Development and Performance Analysis of a New Navigation Algorithm by Combining Gravity Gradient and Terrain Data as well as EKF and Profile Matching

  • Lee, Jisun;Kwon, Jay Hyoun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.5
    • /
    • pp.367-377
    • /
    • 2019
  • As an alternative navigation system for the non-GNSS (Global Navigation Satellite System) environment, a new type of DBRN (DataBase Referenced Navigation) which applies both gravity gradient and terrain, and combines filter-based algorithm with profile matching was suggested. To improve the stability of the performance compared to the previous study, both centralized and decentralized EKF (Extended Kalman Filter) were constructed based on gravity gradient and terrain data, and one of filters was selected in a timely manner. Then, the final position of a moving vehicle was determined by combining a position from the filter with the one from a profile matching. In the simulation test, it was found that the overall performance was improved to the 19.957m by combining centralized and decentralized EKF compared to the centralized EKF that of 20.779m. Especially, the divergence of centralized EKF in two trajectories located in the plain area disappeared. In addition, the average horizontal error decreased to the 16.704m by re-determining the final position using both filter-based and profile matching solutions. Of course, not all trajectories generated improved performance but there is not a large difference in terms of their horizontal errors. Among nine trajectories, eights show smaller than 20m and only one has 21.654m error. Thus, it would be concluded that the endemic problem of performance inconsistency in the single geophysical DB or algorithm-based DBRN was resolved because the combination of geophysical data and algorithms determined the position with a consistent level of error.

Integrated Navigation Filter Design for Trains Considering the Mounting Misalignment Error of the IMU

  • Chae, Myeong Seok;Cho, Seong Yun;Shin, Kyung Ho
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.10 no.3
    • /
    • pp.179-187
    • /
    • 2021
  • To estimate the location of the train, we consider an integrated navigation system that combines Inertial Navigation System (INS) and Global Navigation Satellite System (GNSS). This system provides accurate navigation results in open sky by combining only the advantages of both systems. However, since measurement update cannot be performed in GNSS signal blocked areas such as tunnels, mountain, and urban areas, pure INS is used. The error of navigation information increases in this area. In order to reduce this problem, the train's Non-Holonomic Constraints (NHC) information can be used. Therefore, we deal with the INS/GNSS/NHC integrated navigation system in this paper. However, in the process of installing the navigation system on the train, a Mounting Misalignment Error of the IMU (MMEI) inevitably occurs. In this case, if the NHC is used without correcting the error, the navigation error becomes even larger. To solve this problem, a method of easily estimating the MMEI without an external device is introduced. The navigation filter is designed using the Extended Kalman Filter (EKF) by considering the MMEI. It is assumed that there is no vertical misalignment error, so only the horizontal misalignment error is considered. The performance of the integrated navigation system according to the presence or absence of the MMEI and the estimation performance of the MMEI according to the method of using NHC information are analyzed based on simulation. As a result, it is confirmed that the MMEI is accurately estimated by using the NHC information together with the GNSS information, and the performance and reliability of the integrated navigation system are improved.

Observability Analysis and Multi-Dimensional Filter Design of the INS/GPS Integrated System for Land Vehicles (차량용 INS/GPS 결합시스템의 가관측성 분석 및 다중 차수 필터 설계)

  • Cho, Seong-Yun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.7
    • /
    • pp.702-710
    • /
    • 2008
  • In this paper, the observability of the INS/GPS integrated system for a land vehicle is analyzed on measurements and different filters with respect to the measurements are designed. In the stationary case, it is shown that horizontal accelerometer biases and vertical attitude errors and gyro biases are unobservable. An 8-state filter is designed based on the observability analysis. When GPS signal is available, a 15-state filter is used with position and velocity measurements. To estimate the INS errors even in the case that GPS signal is blocked a filter is designed in consideration of the non-holonomic constraints of a land vehicle. In this case, the horizontal position and velocity errors and vertical attitude error are unobservable. However, a 12-state filter including the velocity states is designed to estimate the accelerometer biases. When GPS signal recovers, a 9-state filter is used excluding the sensor biases. This paper presents a multi-dimensional filter that switches the four filters according to the usable measurements and maneuver environments. A simulation is carried out to verify the performance of the proposed filter.

Construction of Orthogonal Basis Functions with Non-Divergent Barotropic Rossby-Haurwitz Waves

  • Cheong, Hyeong-Bin;Jeong, Hanbyeol;Kim, Wonho
    • Journal of the Korean earth science society
    • /
    • v.35 no.5
    • /
    • pp.333-341
    • /
    • 2014
  • A new set of basis functions was constructed using the Rossby-Haurwitz waves, which are the eigenfunctions of nondivergent barotropic vorticity equations on the sphere. The basis functions were designed to be non-separable, that is, not factored into functions of either the longitude or the latitude. Due to this property, the nodal lines of the functions are aligned neither along with the meridian nor the parallel. The basis functions can be categorized into groups of which members have the same degree or the total wavenumber-like index on the sphere. The orthonormality of the basis functions were found to be close to the machine roundoffs, giving the error of $O(10^{-15})$ or $O(10^{-16})$ for double-precision computation (64 bit arithmetic). It was demonstrated through time-stepping procedure that the basis functions were also the eigenfunctions of the non-divergent barotropic vorticity equations. The projection of the basis functions was carried out onto the low-resolution geopotential field of Gaussian bell, and compared with the theory. The same projections were performed for the observed atmospheric-geopotential height field of 500 hPa surface to demonstrate decomposition into the fields that contain disturbance of certain range of horizontal scales. The usefulness of the new basis functions was thus addressed for application to the eigenmode analysis of the atmospheric motions on the global domain.