• Title/Summary/Keyword: Non-holonomic Robots

Search Result 11, Processing Time 0.024 seconds

Real-time Obstacle Avoidance of Non-holonomic Mobile Robots Using Expanded Guide Circle Method (확장 가이드 서클 방법을 이용한 비홀로노믹 이동로봇의 실시간 장애물 회피)

  • Shim, Young-Bo;Kim, Gon-Woo
    • The Journal of Korea Robotics Society
    • /
    • v.12 no.1
    • /
    • pp.86-93
    • /
    • 2017
  • The Expanded Guide Circle (EGC) method has been originally proposed as the guidance navigation method for improving the efficiency of the remote operation using the sensory information. The previous algorithm is, however, concerned only for the omni-directional mobile robot, so it needs to suggest a suitable one for a mobile robot with non-holonomic constraints. The ego-kinematic transform is a method to map points of $R^2$ into the ego-kinematic space which implicitly represents non-holonomic constraints for admissible paths. Thus, robots with non-holonomic constraints in the ego-kinematic space can be considered as "free-flying object". In this paper, we propose an effective obstacle avoidance method for mobile robots with non-holonomic constraints by applying EGC method in the ego-kinematic space using the ego-kinematic transformation. This proposed method shows that it works better for non-holonomic mobile robots such as differential-drive robot than the original one. The simulation results show its effectiveness of performance.

Attitude control of space robots with a manipulator using time-state control form

  • Sampei, Mitsuji;Kiyota, Hiromitsu;Ishikawa, Masato
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.468-471
    • /
    • 1995
  • In this paper, we propose a new strategy for a space robot to control its attitude. A space robot is an example of a class of non-holonomic systems, a system of which cannot be stabilized into its equilibria with continuous static state feedbacks even in the case that the system is, in some sense, controllable. Thus, we cannot design stabilizing controllers for space robots using conventional control theories. The strategy presented here transforms the non-holonomic system into a time-state control form, and allows us to make the state of the original system any desired one. In the stabilization, any conventional control theory can be applied. For simplicity, a space robot with a two-link manipulator is considered, and a simulated motion of the controlled system is shown.

  • PDF

Self-Organization of Swarm Robots Based on Color Recognition (컬러 인식에 기반을 둔 스웜 로봇의 자기 조직화 연구)

  • Jung, Hah-Min;Hwang, Young-Gi;Kim, Dong-Hun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.3
    • /
    • pp.413-421
    • /
    • 2010
  • In the study, self-organization by color detection is proposed to overcome required constraints for existing self-organization by an external ceiling camera and communication. In the proposed self-organization, each swarm robot can follow its colleague robot and all swarm robots can follow a target by LOS(Line of Sight). The swarm robots follow the moving target by the proposed potential field, avoiding confliction with neighboring robots and obstacles. Finally, all swarm robots are reached by a sight among swarm robots. In this paper, for unicycle robots with non-holonomic constraints instead of point robot with holonomic constraints self-organization is presented, it enhances the possibility of H/W realization.

A Simultaneous Object Tracking and Obstacles Avoidance Controller with Fuzzy Danger Factor of Mobile Robot (퍼지 위험지수에 의한 이동로봇의 물체 추적 및 장애물 회피 주행 제어기)

  • Kang, Jae-Gu;Lee, Joong-Jae;Jie, Min-Seok;You, Bum-Jae
    • The Journal of Korea Robotics Society
    • /
    • v.2 no.3
    • /
    • pp.212-220
    • /
    • 2007
  • This paper proposes a method of avoiding obstacles and tracking a moving object continuously and simultaneously by using new concepts of virtual tow point and fuzzy danger factor for differential wheeled mobile robots. Since differential wheeled mobile robot has smaller degree of freedom to control and are non-holonomic systems, there exist multiple solutions (trajectories) to control and reach a target position. The paper proposes 'fuzzy danger factor' for obstacles avoidance, 'virtual tow point' to solve non-holonomic object tracking control problem for unique solution and three kinds of fuzzy logic controller. The fuzzy logic controller is policy decision controller with fuzzy danger factor to decide which controller's result is more valuable when the mobile robot is tracking a moving object with obstacles to be avoided.

  • PDF

Generalised Non Error-Accumulative Quantisation Algorithm with feedback loop

  • Koh, Kyoung-Chul;Choi, Byoung-Wook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1269-1274
    • /
    • 2004
  • This paper presents a new quantisation algorithm which has the closed-loop form and guarantees the boundness of accumulative error. This algorithm is particularly useful for mobile robot navigation that is usually implemented on embedded systems. If wheel commands of the mobile robot are given by velocity or positional increment at every control instant and quantised due to finite word length of controller's CPU, the quantisation error gets accumulated to causes large position error. Such an error accumulative characteristic is fatal for non wheeled mobile robots or autonomous vehicles with non-holonomic constraint. To solve this problem, we propose a non-error accumulative quantisation algorithm with closed-loop form. We also show it can be extend to a generalized form corresponding to the n-th order accumulation. The boundness of the accumulative quantisation error is investigated by a series of computer simulation. The proposed method is particularly effective to precise navigation control the autonomous mobile robots.

  • PDF

Algorithm for Autonomous Wall-Following of Wheeled Mobile Robots Using Reference Motion Synthesis and Generation of Hybrid System (하이브리드 시스템의 기준동작 구성과 생성에 의한 차륜형 이동로봇의 자율 벽면-주행 알고리즘)

  • Lim, Mee-Seub;Im, Jun-Hong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.7
    • /
    • pp.586-593
    • /
    • 2000
  • In this paper we propose a new approach to the autonomous wall-following of wheeled mobile robots using hybrid system reference motion synthesis and generation. The hybrid system approach is in-troduced to the motion control of nonholonomic mobile robots for the indoor navigation problems. In the dis-crete event system the discrete states are defined by the user-defined constraints and the reference mo-tion commands are specified in the abstracted motions. The hybrid control system applied for the non-holonomic mobile robots can combine the motion planning and autonomous navigation with obstacle avoid-ance for the indoor navigation problem. Simulation results show that hybrid system approach is an effective method for the autonomous navigation in indoor environments.

  • PDF

Design of adaptive fuzzy controller to overcome a slope of a mobile robot for driving (모바일 로봇의 경사면 극복 주행 제어를 위한 적응 퍼지 제어기 설계)

  • Park, Jong-Ho;Baek, Seung-Jun;Chong, Kil-To
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.12
    • /
    • pp.6034-6039
    • /
    • 2012
  • In this paper, this may appear to exacerbate it met slopes of the mobile robot moves to overcome this by driving can occur if the mobile robot system has its own sleep problems driving progress in until you hit the target and solvedriving straight driving safer model for adaptive fuzzy control method of mobile robot based control algorithm is proposed. First, we propose a model based adaptive fuzzy controller, if possible, the dynamics model of the mobile robot, including model-based controller is designed to determine if you can check the condition of the mobile robot climbing and driving the mobile robot to overcome the slope and the to overcome driving control. Enough considering the ground friction forces and ensure the stability of the mobile robot system and the disturbance compensation, etc. In this case, the controller design will be possible. In addition, the nonlinear model, the dynamic characteristics of the mobile robot control method of adaptive fuzzy control techniques in the design that you want to fully reflect Non-holonomic system of mobile robots and solve sleep problems, and will be useful enough, it was verified through computer simulations.

A steering control method for wheel-driven mobile robot (휠구동방식의 자유이동로봇을 위한 조향제어방법)

  • 고경철;조형석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.787-792
    • /
    • 1991
  • This paper proposes a steering control algorithm for non-holonomic mobile robots. The steering control algorithm is essential to navigate autonomous vehicles which employ comination of the dead reckoning and absolute sensor system such as a machine vison for detecting landmarks in order to estimate the current location of the mobile robot. The proposed algorithm is based on the minimum time BANG-BANG controller and curvature-continuity curve design method. In the BANG-BANG control scheme we introduce velocity/acceleration limiter to avoid any slippage of driving wheels. The proposed scheme is robot-independent and hence can be applied to various kinds of mobile robot or vehicles. To show the effectness of the proposed control algorithm, a series of computer simulations were conducted for two-wheel driven mobile robot.

  • PDF

Path Tracking Control for Mobile Robot Considering Its Dynamics (동특성을 고려한 이동로봇의 궤적제어)

  • Ko, Kyung-Suk;Lee, Min-Jung;Choi, Young-Kiu
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2473-2475
    • /
    • 2001
  • In trajectory tracking methods, the error values of current position and velocity are compensated to follow the given reference path and velocity. The path tracking for a wheeled mobile robot is treated in this paper. It is very difficult to implement stable trajectory tracking algorithms because mobile robots have kinematically non-holonomic constraints. For solving this problem, a velocity controller is presented in this paper. This velocity controller is designed by a PID controller which could be easily employed. In this case, velocity errors caused by system uncertainties or internal and external disturbances could exist. A neural network is used for compensating the velocity errors. Input variables of this neural network compensator are defined by differences between the velocities of the posture controller and the real velocities of the mobile robot. Simulation results show the effectiveness of the proposed controller.

  • PDF

Development of Educational Robot Platform Based on Omni-directional Mobile Mechanism (전방향 이동 메커니즘 기반의 교육용 로봇 플랫폼 개발)

  • Chu, Baeksuk;Sung, Young Whee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.11
    • /
    • pp.1161-1169
    • /
    • 2013
  • In this paper an omni-directional mobile robot is suggested for educational robot platform. Comparing to other robots, a mobile robot can be easily designed and manufactured due to its simple geometric structure. Moreover, since it is required to have low DOF motion on planar space, fabrication of control system is also simple. In this research, omni-directional wheels were adopted to remove the non-holonomic characteristic of conventional wheels and facilitate control system design. Firstly, geometric structure of a Mecanum wheel which is a most frequently used omni-directional wheel was demonstrated. Then, the organization of the mobile platform was suggested in aspects of mechanism manufacturing and electronic hardware design. Finally, a methodology of control system development was introduced for educational purpose. Due to an intuitive motion generating ability, simple hardware composition, and convenient control algorithm applicability, the omni-directional mobile robot suggested in this research is expected to be a promising educational platform.