• Title/Summary/Keyword: Non-flammable

Search Result 69, Processing Time 0.021 seconds

A Study on ASET Elongation & Notification Time to Fire Stations for the Escape Safety of Aged Bedridden Patients in Elderly Long-term Medical Care (노인의료복지시설 화재 시 와상노인의 피난안전성 제고를 위한 피난허용시간 연장과 소방기관으로의 통보시간 연구)

  • Park, Hyung-Joo;Lee, Young-Jae
    • Fire Science and Engineering
    • /
    • v.32 no.4
    • /
    • pp.50-59
    • /
    • 2018
  • Recently, huge life losses occurred in the elderly long-term medical care fires due to lack of escape safety. As part of the measures to enhance the effectiveness of fire escape safety, while they prolong the available safe egress time (ASET) of non fire compartments, a measure to shorten fire-fighter's arrival time by fire alarm notifying device should be implemented in these facilities. The four categories from the aspects of fire prevention/protection engineering were provided with the necessary component technologies for carrying out these helper-guided evacuations. Fire prevention engineered technology was presented by two provisions; one for ensuring small compartment sections by installing the fire rated wall between bed rooms and another for ensuring the fire retardant or/and non-flammable performance of finishing materials. Also fire protection engineered technology was presented by two items; one for imposing cooling effects by sprinklers and another for providing automatic fire alarm notifying functions to fire stations. In order to improve the escape safety of these facilities in Korea, alternative revisions may presented by considering insufficient provisions in the architectural/fire law provisions by analyzing the provisions of Japanese and domestic laws in detail.

A Study of Consequence Analysis of Physical Explosion Damage in CO2 Storage Tank (CO2 임시 저장 탱크에서의 물리적 폭발에 따른 피해영향 고찰)

  • Seo, Doo-Hyoun;Jang, Kap-Man;Lee, Jin-Han;Rhie, Kwang-Won
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.2
    • /
    • pp.12-19
    • /
    • 2015
  • $CO_2$ is non-flammable, non-toxic gas and not cause of chemical explosion. However, various impurities and some oxides can be included in the captured $CO_2$ inevitably. While the $CO_2$ gas was temporarily stored, the pressure in a storage tank would be reached above 100bar. Therefore, the tank could occur a physical explosion due to the corrosion of vessel or uncertainty. Evaluating the intensity of explosion can be calculated by the TNT equivalent method generally used. To describe the physical explosion, it is assumed that the capacity of a $CO_2$ temporary container is about 100 tons. In this work, physical explosion damage in a $CO_2$ storage tank is estimated by using the Hopkinson's scaling law and the injury effect of human body caused by the explosion is assessed by the probit model.

A Study on the Fire Characterization of Foam block using Cone-calorimeter and FTIR (콘칼로리미터와 적외선분광계(FTIR)를 이용한 폼블럭의 연소특성에 대한 실험적 연구)

  • Han, Bong-Hoon;Seo, Dong-Ho;Kwon, Young-Hee;Min, Se-Hong
    • Fire Science and Engineering
    • /
    • v.31 no.6
    • /
    • pp.23-32
    • /
    • 2017
  • Foam block, popularized as the self-interior goods, is susceptible to fire since the main material is the polyethylene flammable synthetic resin. However, it is widely used in homes, offices, and multi-use facilities. In order to understand the fire characteristics of the foam block, two kinds of foam blocks sold in the market (non-fire retardant and fire retardant) were evaluated according to standard of KS F 5660-1 (Reaction to fire test). In addition, the hazard analysis of the gas generated by the combustion of the specimen was performed using the FTIR gas analyzer. The cone calorimeter test showed that the ignition and flame combustion of both two specimens were burned as soon as the radiant heat blocking device was removed, and it was confirmed that the flame could become a rapid propagation factor during the fire. The analysis of the combustion gas through the FTIR gas analyzer showed that both the carbon dioxide and carbon monoxide classified as the common combustion gases and the acrolein, ammonia, and hydrogen cyanide causing serious damage to the human body were detected substantially. This study showed that a foam block product has high ignitionability and generates toxic gases. Hence, it is urgently required to establish the standards used for properly classifying the combustion characteristics of the material on the basis of the use conditions of a foam block product and to prepare the standards on the purpose of use.

Preparation of PES Hollow Fiber Membranes and Their $O_2/N_2$ Permeation Properties (폴리이서설폰 중공사막의 제조 및 $O_2/N_2$ 투과특성)

  • Park, Sung-Ryul;Chang, Bong-Jun;Ahn, Hyo-Seong;Kim, Dong-Kwon;Kim, Jeong-Hoon
    • Membrane Journal
    • /
    • v.21 no.1
    • /
    • pp.62-71
    • /
    • 2011
  • Highly enriched oxygen is used in energy-efficient combustion due to decreased non-flammable nitrogen, while high purity nitrogen is used for explosion proof in the LNG ships and keeping the freshness of green stuffs. Membrane technology can be used in these $O_2$ and $N_2$ generation with low energy consumption. In this study, PES was used as a membrane material and 1-methyl-2-pyrollidone (NMP) and acetone were employed as a good solvent and nonsolvent addictive (swelling agent to PES), respectively. Dope solutions were prepared by changing the content of acetone (0, 6.5, 15, 25, 31.5 wt%) in 37 wt% PES solutions. Hollow fiber spinning was performed at 0~10 cm of air-gap distances for each dope solution. $O_2/N_2$ selectivity and permeability were investigated by comparing of hollow fibers coated or not by silicons. $O_2/N_2$ selectivity increased and permeance of $O_2$ and $N_2$ decreased with increasing air-gap height independently of acetone addictions. Optimized PES hollow fibers were obtained with 37/6.5/56.5 wt% PES/acetone/NMP dope solution and 10 cm air-gap, which showed 7.3 of $O_2/N_2$ selectivity and 4.3 GPU of $O_2$ permeability after silicon coating.

Study on Electrochemical Performances of PEO-based Composite Electrolyte by Contents of Oxide Solid Electrolyte (산화물계 고체전해질 함량에 따른 PEO 기반 복합전해질 전기화학 성능 연구)

  • Lee, Myeong Ju;Kim, Ju Young;Oh, Jimin;Kim, Ju Mi;Kim, Kwang Man;Lee, Young-Gi;Shin, Dong Ok
    • Journal of the Korean Electrochemical Society
    • /
    • v.21 no.4
    • /
    • pp.80-87
    • /
    • 2018
  • Safety issues in Li-ion battery system have been prime concerns, as demands for power supply device applicable to wearable device, electrical vehicles and energy storage system have increased. To solve safety problems, promising strategy is to replace organic liquid electrolyte with non-flammable solid electrolyte, leading to the development of all-solid-state battery. However, relative low conductivity and high resistance from rigid solid-solid interface hinder a wide application of solid electrolyte. Composite electrolytes composed of organic and inorganic parts could be alternative solution, which in turn bring about the increase of conductivity and conformal contact at physically rough interfaces. In our study, composite electrolytes were prepared by combining poly(ethylene oxide)(PEO) and $Li_7La_3Zr_2O_{12}$ (LLZO). The crystallinity, morphology and electrochemical performances were investigated with the control of LLZO contents from 0 wt% to 50 wt%. From the results, it is concluded that optimum content and uniform dispersion of LLZO in polymer matrix are significant to improve overall conductivity of composite electrolyte.

Development of Safe Stove System using Sound Wave Fire Extinguisher (음파 소화기를 이용한 안전 스토브 시스템 개발)

  • Seo, Yunwon;Lee, Sukjae;Park, yungjoo;Kim, Kinam;Choi, Yongrae;Hwang, Hyungjun;Han, Seunghan;Shim, Dongha
    • Fire Science and Engineering
    • /
    • v.32 no.6
    • /
    • pp.34-39
    • /
    • 2018
  • In this paper, the architecture of a safe stove with an automatic fire suppression function using a sound wave fire extinguisher has been proposed and developed for the first time. A microcontroller connected to a fire sensor detects and suppresses a fire by driving a fire extinguisher. The sound wave fire extinguisher is composed of a speaker and collimator, and is driven by a driver module including an audio amplifier. The attenuation of the sound wave is reduced by preventing the sound diffusion with an enclosure surrounding a stove. The frequency of the sound wave is set to 50 Hz, and the sound pressure of 93 dBA is measured at the distance of 0.5 m. It takes maximum 8 and 15 seconds to suppress the flame from 7-cc and 14-cc flammable liquid, respectively, which corresponds to 24% and 42% of the natural extinguishing time. Since the proposed safe stove is non-toxic and leaves no residues over the conventional ones, it would combine with various home appliances to suppress early-stage fires and prevent fire expansion.

Assessment of the Risks of Fire and Explosion through the Spontaneous Ignition Temperature and Activation Energy of Sesame Seed Oil Cakes (참깻묵의 자연발화온도와 활성화 에너지를 통한 화재 및 폭발의 위험성 평가)

  • Byun, Sung-Ho;Choi, Yu-Jung;Yoo, Doo-Yeol;Kim, Kyoung-Su;Oh, Jae-Geun;Moon, Byung-Seon;Choi, Jae-Wook
    • Korean Chemical Engineering Research
    • /
    • v.59 no.2
    • /
    • pp.225-231
    • /
    • 2021
  • Sesame seed oil cakes are classified as the animal or plant origin among the flammable liquids, and the fire occurs due to the spontaneous ignition through the accumulation of heat during the storage of residues after the extraction of sesame oil. In order to elucidate the cause of the spontaneous ignition of sesame seed oil cakes, the thickness (3 cm, 5 cm, 7 cm and 14 cm) of the sample container was varied, and the spontaneous ignition temperature was measured depending on the storage volume. Thus, the spontaneous ignition temperature was measured to be 180 ℃ at the thickness of 3 cm, 160 ℃ at 5 cm, 145 ℃ at 7 cm and 130 ℃ at 14 cm. As the thickness of the sample container increased, the critical ignition temperature decreased, and the induction time to spontaneous ignition and the time to reach the maximum temperature became longer. Furthermore, the apparent activation energy by the critical ignition temperature, which is the average temperature of ignition and non-ignition, was 97.10 [kJ/mol]. With these data, ignition characteristics of sesame seed oil cakes were determined.

A Review on the Wet Chemical Synthesis of Sulfide Solid Electrolytes for All-Solid-State Li Batteries (전고체전지용 황화물 고체전해질 습식 합성기술 동향)

  • Ha, Yoon-Cheol
    • Journal of the Korean Electrochemical Society
    • /
    • v.25 no.3
    • /
    • pp.95-104
    • /
    • 2022
  • The development of non-flammable all-solid-state batteries (ASSLBs) has become a hot topic due to the known drawbacks of commercial lithium-ion batteries. As the possibility of applying sulfide solid electrolytes (SSEs) for electric vehicle batteries increases, efforts for the low-cost mass-production are actively underway. Until now, most studies have used high-energy mechanical milling, which is easy to control composition and impurities and can reduce the process time. Through this, various SSEs that exceed the Li+ conductivity of liquid electrolytes have been reported, and expectations for the realization of ASSLBs are growing. However, the high-energy mechanical milling method has disadvantages in obtaining the same physical properties when mass-produced, and in controlling the particle size or shape, so that physical properties deteriorate during the full process. On the other hand, wet chemical synthesis technology, which has advantages in mass production and low price, is still in the initial exploration stage. In this technology, SSEs are mainly manufactured through producing a particle-type, solution-type, or mixed-type precursor, but a clear understanding of the reaction mechanism hasn't been made yet. In this review, wet chemical synthesis technologies for SSEs are summarized regarding the reaction mechanism between the raw materials in the solvent.

1,3-Dioxolane-Based CO2 Selective Polymer Membranes for Gas Separation (1,3-Dioxolane 기반 CO2 선택성 고분자막의 개발)

  • Iqubal Hossain;Asmaul Husna;Ho Bum Park
    • Membrane Journal
    • /
    • v.33 no.3
    • /
    • pp.94-109
    • /
    • 2023
  • 1,3-Dioxolane is an exciting material that has attracted widespread interest in the chemical, paint, and pharmaceutical industries as a solvent, electrolyte, and reagent because 1,3-dioxolane is not toxic, carcinogenic, explosive, auto-flammable, and multifunctional, and due to their excellent miscibility in most organic and aqueous solvent conditions. Recently, this material has received increasing attention as a CO2-selective polymer precursor to separating CO2 from flue gas and natural gas mixtures. Poly(1,3-dioxolane) (PDXL) possesses higher ether oxygen content than polyethylene oxide (PEO), which demonstrates superior membrane CO2/N2 separation properties owing to their polar ether oxygen groups exhibiting strong affinity toward CO2. Thus, PDXL-based membranes displayed an outstanding CO2 solubility selectivity over non-polar (N2, H2, and CH4) gases. However, the polar groups of PDXL, like PEO, promote chain packing efficiency and cause polymer crystallization, thereby reducing its gas permeability, which should be improved. In this short review, we discuss the recent advancement and limitations of PDXL membranes in gas separation applications. To conclude, we provide future perspectives for inhibiting the limits of 1,3-dioxolane-based polymers in the CO2 separation process.