• 제목/요약/키워드: Non-ferrous metals

검색결과 87건 처리시간 0.021초

Ti-Ni형상기억합금의 생체활성에 미치는 표면처리의 영향 (Effect of Surface Treatment on Bioactivity of Ti-Ni Shape Memory Alloys)

  • 최미선;남태현
    • 대한금속재료학회지
    • /
    • 제47권12호
    • /
    • pp.881-886
    • /
    • 2009
  • Research into the replacement of injured systems and tissue in the human body is advancing rapidly. Recently, Ti-Ni shape memory alloys have shown excellent biofunctionality related to their shape memory effect and superelasticity. In this study, the effect of an acid or an alkali treatment on the bioactivity in 49Ti-Ni and 51.5Ti-48.5Ni alloys is investigated in an effort to utilize Ti-Ni alloy as a biomaterial. In addition, the biocompatibility in a SBF solution is assessed through in vitro testing. A porous surface was formed on the surface of both alloys after a chemical treatment. According to the in vitro test, apatite formed on the surfaces of both alloys. The forming rate of apatite in the Ti-rich alloy was faster that in the Ni-rich alloy. The formation of apatite provided proof of the bioactivity of the Ti-Ni alloy. A small quantity of Ni was eluted at the initial stage, whereas Ni was not found for 12 days in the Ti-rich alloy and for 8 days in the Ni-rich alloy. In the case of the treated 51.5Ti-Ni alloy, the shape memory property was worsened but the biocompatibility was improved.

Nondestructive Evaluation on Hydrogen Effect of TIG Welded Stainless Steel for Component Design of Pressure Vessel

  • Lee, Jin-Kyung
    • 동력기계공학회지
    • /
    • 제21권3호
    • /
    • pp.102-107
    • /
    • 2017
  • A tungsten inert gas (TIG) welding method was used for the bonding of stainless steel. TIG welding using inert gas (He or Ar gas) is a method to prevent oxidation and nitriding of materials and to combine non-ferrous metals. This method has the advantage of obtaining a smooth weld surface. In this study, the welding characteristics of 304 stainless steel welded by TIG welding method were analyzed by using nondestructive technique. Ultrasonic and Acoustic Emission (AE) was applied to evaluate the micro-damage of TIG welded 304 stainless steel. The velocity and damping coefficient of ultrasonic wave showed a slight difference in HAZ, which is the welding part of stainless steel. The AE parameters of average frequency, rise time and event were analyzed for the dynamic behavior of stainless steel during loading. Optimal AE parameters for evaluating the degree of damage to the specimen have been derived. Fractograph and metal structures of 304 stainless steel using SEM and optical microscope were discussed.

Burr and Shape Distortion Micro-Grooving of Non-Ferrous Metals Using a Diamond Tool

  • Ahn, Jung-Hwan;Lim, Han-Seok;Son, Seong-Min
    • Journal of Mechanical Science and Technology
    • /
    • 제14권11호
    • /
    • pp.1244-1249
    • /
    • 2000
  • Burr and shape distortion are two main problems in micro-grooving. In this study, a simplified model is proposed based on large thrust force due to the tool edge radius. Experiments are conducted with a single crystal diamond tool on a 3-axis snaper-like machine varying the depth of cuts, and groove angles on brass, aluminum and OFHC. Experiments have shown that the thrust force becomes a dominant variable in burr generation compared to the principal force when the depth of cut is less than 2${\mu}m$. And fewer burrs develop on more brittle materials. Shape distortion is significant only when the groove angle is small and the depth of cut is larger than 30 ${\mu}m$.

  • PDF

생활폐기물 소각 바닥재의 입도별 철, 비철의 분리 특성 (Separation of ferrous and non ferrrous metals from municipal solid waste incineration bottom ash with different particle size)

  • 엄남일;한기천;유광석;조희찬;안지환
    • 한국자원리싸이클링학회:학술대회논문집
    • /
    • 한국자원리싸이클링학회 2005년도 추계정기총회 및 제26회 학술발표대회 고분자리싸이클링기술 특별심포지엄
    • /
    • pp.240-242
    • /
    • 2005
  • 본 연구에서는 생활폐기물 소각장에서 발생하고 있는 바닥재를 이용하여 각 입도에 대해 자력의 세기에 따라 철/비철선별 하였다. 자력의 세기에 따른 분리량과 분리된 산물의 철함 유량을 조사함으로써 자력 및 비철 효율을 파악하고자 하였다. 또한, 비철 선별기를 사용하여 비철 선별 효율을 조사하였다. 자력선별결과, 자력의 세기가 증가할수록 자력선별에 의해 분리량이 증가하였으나, 분리된 산물의 철함유량은 감소하는 경향을 나타내었다. 이러한 결과는 자력세기의 증가가 철회수량의 증가보다는 불순물의 혼입량을 증가시키는 것으로 생각된다. 비철의 경우, 입자크기가 커짐에 따라 분리율이 높았으며, 4.75mm이상에서는 대부분의 비철이 회수되었다.

  • PDF

강 표면의 다이아몬드/몰리브데늄/니켈 복합층의 생성 (Formation of Diamond/Mo/Ni Multi-Layer on Steel Substrate)

  • Lee, H.J.;J.I. Choe;Park, Y.
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2002년도 춘계학술발표회 초록집
    • /
    • pp.37-37
    • /
    • 2002
  • Diamoncl/Mo/Ni multi-layers on SKH-51 steel substrate was prepared to improve the abrasive wear resistance of a tool and die by a commercial chemical vapor deposition unit and electro-plating. The diamond after 7 hour deposition had cuba-octahedral structure with 2~5$\mu\textrm{m}$ grains. The existence of non-ferrous metals such as chromium, nickel and molybdenum between diamond and SKH-51 substrate results in forming higher quality of diamond layer by retarding carbon diffusion in the diamond layer during deposition, and also improving hardness and wear resistance. Surface cracks on the film was sometimes observed by the difference of by the thermal expansion coefficients between the steel substrate and the deposited layers during cooling.

  • PDF

SEM-EDX 분석법에 의한 부산 S공업단지의 PM10과 PM2.5의 화학적 조성 및 발생원 추정 (Source Apportionment Study and Chemical Composition of PM10 and PM2.5 in the Industrial Complex of Busan City, Korea)

  • 김용석;최금찬;서정민
    • 한국환경과학회지
    • /
    • 제26권11호
    • /
    • pp.1297-1306
    • /
    • 2017
  • This study identified physical characteristics and aerosol particle sources of $PM_{10}$ and $PM_{2.5}$ in the industrial complex of Busan Metropolitan City, Korea. Samples of $PM_{10}$, $PM_{2.5}$ and also soil, were collected in several areas during the year of 2012 to investigate elemental composition. A URG cyclone sampler was used for collection. The samples were collected according to each experimental condition, and the analysis method of SEM-EDX was used to determine the concentration of each metallic element. The comparative analysis indicated that their mass concentration ranged from 1% to 3%. The elements in the industrial region that were above 10% were Si, Al, Fe, and Ca. Those below 5% were Na, Mg, and S. The remaining elements (1% of total mass) consisted of elements such as Ni, Co, Br and Pb. Finally, a statistical tool was applied to the elemental results to identify each source for the industrial region. From a principal components analysis (SPSS, Ver 20.0) performed to analyze the possible sources of $PM_{10}$ in the industrial region, five main factors were determined. Factor 1 (Si, Al), which accounted for 15.8% of the total variance, was mostly affected by soil and dust from manufacturing facilities nearby, Factors 2 (Cu, Ni), 3 (Zn, Pb), and 4 (Mn, Fe), which also accounted for some of variance, were mainly related to iron, non-ferrous metals, and other industrial manufacturing sources. Also, five factors determined to access possible sources of $PM_{2.5}$, Factor 1 (Na, S), accounted for 13.5% of the total variance and was affected by sea-salt particles and fuel incineration sources, and Factors 2 (Ti, Mn), 3 (Pb, Cl), 4 (K, Al) also explained significant proportions of the variance. Theses factors mean that the $PM_{2.5}$ emission sources may be considered as sources of incineration, and metals, and non-ferrous manufacturing industries.

드릴공구의 이종질화막상 DLC 희생층 적용을 통한 공구 수명 개선 연구 (A Study on the Improvement of Tool's Life by Applying DLC Sacrificial Layer on Nitride Hard Coated Drill Tools)

  • 강용진;김도현;장영준;김종국
    • 한국표면공학회지
    • /
    • 제53권6호
    • /
    • pp.271-279
    • /
    • 2020
  • Non-ferrous metals, widely used in the mechanical industry, are difficult to machine, particularly by drilling and tapping. Since non-ferrous metals have a strong tendency to adhere to the cutting tool, the tool life is greatly deteriorated. Diamond-like carbon (DLC) is one of the promising candidates to improve the performance and life of cutting tool due to their low frictional property. In this study, a sacrificial DLC layer is applied on the hard nitride coated drill tool to improve the durability. The DLC coatings are fabricated by controlling the acceleration voltage of the linear ion source in the range of 0.6~1.8 kV. As a result, the optimized hardness(20 GPa) and wear resistance(1.4 x 10-8 ㎣/N·m) were obtained at the 1.4 kV. Then, the optimized DLC coating is applied as an sacrificial layer on the hard nitride coating to evaluate the performance and life of cutting tool. The Vickers hardness of the composite coatings were similar to those of the nitride coatings (AlCrN, AlTiSiN), but the friction coefficients were significantly reduced to 0.13 compared to 0.63 of nitride coatings. The drilling test were performed on S55C plate using a drilling machine at rotation speed of 2,500 rpm and penetration rate of 0.25 m/rev. The result showed that the wear width of the composite coated drills were 200 % lower than those of the AlCrN, AlTiSiN coated drills. In addition, the cutting forces of the composite coated drills were 13 and 15 % lower than that of AlCrN, AlTiSiN coated drills, respectively, as it reduced the aluminum clogging. Finally, the application of the DLC sacrificial layer prevents initial chipping through its low friction property and improves drilling quality with efficient chip removal.

TIG용접에서 실드가스 종류의 변화에 따른 용접부의 변화상태 고찰 (Study on The Status of Welded Parts According to The Types of Shielding Gas in TIG Welding)

  • 김진수;김법헌;이칠순;김용조;박용환
    • 한국기계가공학회지
    • /
    • 제14권2호
    • /
    • pp.38-43
    • /
    • 2015
  • Tungsten inert gas (TIG) welding is commonly used in industries that require airtightness, watertightness, oiltightness, and precision. It is a non-consumable welding method that is commonly used for the welding of non-ferrous metals, but it can be used to weld most metals. The methods of TIG welding can be divided into three types. The first, manual welding is done directly on the metal by a welder with a torch. The second, semi-automatic welding, gets help from a material supplying machine, but it is conducted by a welder. Lastly, automated welding is conducted fully by a machine during its process and operation. Depending on the selection of electrode, the amount of heat that is applied to the base material and the electrode rod changes and makes the shape of welded parts different. A direct-current positive electrode was used for this study. Through the change of shielding gas type on a structural steel (SS-400) that is commonly used in industry, the composition and shape changes in welded parts were detected after welding. The heat-affected area, hardness value, and tensile strength were also identified through hardness testing and tensile testing. In this study, it was found that the higher hardness value of the heat-affected is, the weaker the tensile strength becomes.

The Application of Non-phosphorous AEC Program in Cooling Water Systems of Petrochemical Industry

  • Li, Dagang;Hong, Mike;He, Gaorong
    • Corrosion Science and Technology
    • /
    • 제7권1호
    • /
    • pp.16-21
    • /
    • 2008
  • A non-phosphorous program employing an alkyl epoxy carboxylate (AEC) has been successfully applied to petrochemical and other large industrial open recirculating cooling water systems. AEC is a patented non-phosphorous calcium carbonate scale inhibitor that has demonstrated better scale inhibition abilities than traditional organic phosphonates. In addition to its antiscalant properties, AEC inhibits carbon steel corrosion when used at high dosages. AEC can be combined with zinc to form a non-phosphorous program with very low levels of phosphate to provide an environmentally acceptable program. In actual applications, the total phosphate developed in the cooling system from cycling the makeup is below 1 ppm as $PO_4$. This level has complied with the highest standards of wastewater discharge limitations. The performance of two AEC/Zinc applications is reviewed. In both cases excellent corrosion and scale control were achieved with AEC/Zinc programs. One case history details the performance with a low hardness water (100 ppm calcium, as $CaCO_3$) operating at 8-10 cycles of concentration. The corrosive nature of the water and the long retention time of the system stressed both the corrosion and scale control capabilities of the program. The second case history demonstrates the performance of the program with a moderate hardness water (400-600 ppm calcium, as $CaCO_3$), but under harsh conditions of high temperature and low flow. The AEC/zinc combination has been found to be highly effective in controlling the corrosion of ferrous metals. AEC can provide good corrosion inhibition at high concentrations, while zinc is known to be an excellent cathodic inhibitor. The combination of the two inhibitors not only provides a synergistic blend that is effective over a wide range of operating conditions, but also is environmentally friendly.

Pulse TIG welding: Process, Automation and Control

  • Baghel, P.K.;Nagesh, D.S.
    • Journal of Welding and Joining
    • /
    • 제35권1호
    • /
    • pp.43-48
    • /
    • 2017
  • Pulse TIG (Tungsten Inert Gas) welding is often considered the most difficult of all the welding processes commonly used in industry. Because the welder must maintain a short arc length, great care and skill are required to prevent contact between the electrode and the workpiece. Pulse TIG welding is most commonly used to weld thin sections of stainless steel, non-ferrous metals such as aluminum, magnesium and copper alloys. It is significantly slower than most other welding techniques and comparatively more complex and difficult to master as it requires greater welder dexterity than MIG or stick welding. The problems associated with manual TIG welding includes undercutting, tungsten inclusions, porosity, Heat affected zone cracks and also the adverse effect on health of welding gun operator due to amount of tungsten fumes produced during the welding process. This brings the necessity of automation. Hence, In this paper an attempt has been made to build a customerized setup of Pulse TIG welding based on through review of Pulse TIG welding parameters. The cost associated for making automated TIG is found to be low as compared to SPM (Special Purpose machines) available in the market.