• Title/Summary/Keyword: Non-dominant sorting genetic algorithm (NSGA-II)

Search Result 5, Processing Time 0.015 seconds

Approximate Multi-Objective Optimization of Bike Frame Considering Normal Load (수직하중을 고려한 자전거 프레임의 다중목적 최적설계)

  • Chae, Yunsik;Lee, Jongsoo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.2
    • /
    • pp.211-216
    • /
    • 2015
  • Recently, because of the growth in the leisure industry and interest in health, the demand for bicycles has increased. In this research, considering the vertical load on a bike frame under static state conditions, the deflection and mass of the bike frame were minimized by satisfying the service condition and performing optimization. The thickness of the bicycle-frame tube was set to a design variable, and its sensitivity was confirmed by an analysis of means (ANOM). To optimize the solution, a response-surface-method (RSM) model was constructed using D-Optimal and central composite design(CCD). The optimization was performed using a non-dominant sorting genetic algorithm (NSGA-II), and the optimal solution was verified by finite-element analysis.

Approximate Multi-Objective Optimization of Stiffener of Steel Structure Considering Strength Design Conditions (강도조건을 고려한 강구조물 보강재의 다목적 근사최적설계)

  • Jeon, Eungi;Lee, Jongsoo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.2
    • /
    • pp.192-197
    • /
    • 2015
  • In many fields, the importance of reducing weight is increasing. A product should be designed such that it is profitable, by lowering costs and exhibiting better performance than other similar products. In this study, the mass and deflection of steel structures have to be reduced as objective functions under constraint conditions. To reduce computational analysis time, central composite design(CCD) and D-Optimal are used in design of experiments(DOE). The accuracy of approximate models is evaluated using the $R^2$ value. In this study, the objective functions are multiple, so the non-dominant sorting genetic algorithm(NSGA-II), which is highly efficient, is used for such a problem. In order to verify the validity of Pareto solutions, CAE results and Pareto solutions are compared.

Approximate Optimization Design Considering Automotive Wheel Stress (자동차용 휠의 응력을 고려한 근사 최적 설계)

  • Lee, Hyunseok;Lee, Jongsoo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.3
    • /
    • pp.302-307
    • /
    • 2015
  • The automobile is an important means of transportation. For this reason, the automotive wheel is also an important component in the automotive industry because it acts as a load support and is closely related to safety. Thus, the wheel design is a very important safety aspect. In this paper, an optimal design for minimizing automotive wheel stress and increasing wheel safety is described. To study the optimal design, a central composite design (CCD) and D-optimal design theory are applied, and the approximate function using the response surface method (RSM) is generated. The optimal solutions using the non-dominant sorting genetic algorithm (NSGA-II) are then derived. Comparing CCD and D-optimal solution accuracy and verified the CCD can deduce more accuracy optimal solutions.

Approximate Multi-Objective Optimization of Gap Size of PWR Annular Nuclear Fuels (가압경수로용 환형 핵연료의 간극 크기 다중목적 근사최적설계)

  • Doh, Jaehyeok;Kwon, Young Doo;Lee, Jongsoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.9
    • /
    • pp.815-824
    • /
    • 2015
  • In this study, we conducted the approximate multi-objective optimization of gap sizes of pressurized-water reactor (PWR) annular fuels. To determine the contacting tendency of the inner-outer gaps between the annular fuel pellets and cladding, thermoelastic-plastic-creep (TEPC)analysis of PWR annular fuels was performed, using in-house FE code. For the efficient heat transfer at certain levels of stress, we investigated the tensile, compressive hoop stress and temperature, and optimized the gap sizes using the non-dominant sorting genetic algorithm (NSGA-II). For this, response surface models of objective and constraint functions were generated, using central composite (CCD) and D-optimal design. The accuracy of approximate models was evaluated through $R^2$ value. The obtained optimal solutions by NSGA-II were verified through the TEPC analysis, and we compared the obtained optimum solutions and generated errors from the CCD and D-optimal design. We observed that optimum solutions differ, according to design of experiments (DOE) method.

Approximate Multi-Objective Optimization of A Wall-mounted Monitor Bracket Arm Considering Strength Design Conditions (강도조건을 고려한 벽걸이 모니터 브라켓 암의 다중목적 근사최적설계)

  • Doh, Jaehyeok;Lee, Jongsoo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.5
    • /
    • pp.535-541
    • /
    • 2015
  • In this study, an approximate multi-objective optimization of a wall-mounted monitor bracket arm was performed. The rotation angle of the bracket arm was determined considering the inplane degree of freedom. We then formulated an optimization problem on maximum stress and deflection. Analyses of mean and design parameters were conducted for sensitivity regarding performance with orthogonal array and response surface method (RSM). RSM models of objective and constraint functions were generated using central composite (CCD) and D-optimal design. The accuracy of approximate models was evaluated through $R^2$ value. The obtained optimal solutions by non-dominant sorting genetic algorithm (NSGA-II) were validated through the finite element analysis and we compared the obtained optimal solution by CCD and D-optimal design.