• Title/Summary/Keyword: Non-cytotoxicity

Search Result 322, Processing Time 0.028 seconds

Augmentation of Macrophage Antitumor Activities and Nitric Oxide Production by Oregonin

  • Joo, Seong-Soo;Kim, Han-Jun;Kwon, Hee-Seung;Lee, Do-Ik
    • Archives of Pharmacal Research
    • /
    • v.25 no.4
    • /
    • pp.457-462
    • /
    • 2002
  • Oregonin, a diarylheptanoid derivative from Alnus hirsuta Turcz, Betulaceae, was evaluated for its antitumor activity. Oregonin, known to have an antitumor function, and is a novel immunomodulator, which may augment macrophage activity. MTT assays and NO production tests were performed in order to investigate the cytotoxicity of oregonin in tumor cells and to examine its influence on macrophage in detail. In this study, the tumoricidal activity was also evaluated by a MTT assay. The cytotoxicity measurements in the oregon in-treated group both in vitro and in vivo showed a significant difference from that of the control group. In vivo, oregonin significantly increased NO production in a dose-dependent manner, and in vitro, the thioglycolate-induced inflammatory macrophages increased NO production in a dose-dependent manner after incubation. These results suggest that oregonin reacts with both the inflammatory and non-inflammatory macrophages in a similar way.

Development of a cell-laden thermosensitive chitosan bioink for 3D bioprinting

  • Ku, Jongbeom;Seonwoo, Hoon;Jang, Kyoung-Je;Park, Sangbae;Chung, Jong Hoon
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.107-107
    • /
    • 2017
  • 3D bioprinting is a technology to produce complex tissue constructs through printing living cells with hydrogel in a layer-by-layer process. To produce more stable 3D cell-laden structures, various materials have been developed such as alginate, fibrin and gelatin. However, most of these hydrogels are chemically bound using crosslinkers which can cause some problems in cytotoxicity and cell viability. On the other hand, thermosensitive hydrogels are physically cross-linked by non-covalent interaction without crosslinker, facilitating stable cytotoxicity and cell viability. The examples of currently reported thermosensitive hydrogels are poly(ethylene glycol)/poly(propylene glycol)/poly(ethylene glycol) (PEG-PPG-PEG) and poly(ethylene glycol)/poly(lactic acid-co-glycolic acid) (PEG/PLGA). Chitosan, which have been widely used in tissue engineering due to its biocompatibility and osteoconductivity, can be used as thermosensitive hydrogels. However, despite the many advantages, chitosan hydrogel has not yet been used as a bioink. The purpose of this study was to develop a bioink by chitosan hydrogel for 3D bioprinting and to evaluate the suitability and potential ability of the developed chitosan hydrogel as a bioink. To prepare the chitosan hydrogel solution, ${\beta}-glycerolphosphate$ solution was added to the chitosan solution at the final pH ranged from 6.9 to 7.1. Gelation time decreased exponentially with increasing temperature. Scanning electron microscopy (SEM) image showed that chitosan hydrogel had irregular porous structure. From the water soluble tetrazolium salt (WST) and live and dead assay data, it was proven that there was no significant cytotoxicity and that cells were well dispersed. The chitosan hydrogel was well printed under temperature-controlled condition, and cells were well laden inside gel. The cytotoxicity of laden cells was evaluated by live and dead assay. In conclusion, chitosan bioink can be a candidate for 3D bioprinting.

  • PDF

A Study on the Viability of Human Dermal Fibroblast Cell by Media for Ni-Cr alloy elution (치과용 Ni-Cr합금 용출배지에 의한 인간 피부 섬유아세포 성장도 관찰 연구)

  • Kim, Kap-Jin;Choi, Sung-Min;Kim, Chi-Young
    • Journal of Technologic Dentistry
    • /
    • v.31 no.3
    • /
    • pp.21-26
    • /
    • 2009
  • Purpose: Standards of alloy for porcelain fused to metal crown be classified by metallic factor and biological factor. Metallic factors consist of stability of alloy composition and mechanical strength and surface characteristics for chemical bond. Biological factors be considered properties of metallic elements and problems originated by toxicity and hypersensitive reaction. Alloys considered such controversial points are the most suitable alloy for dental instrument. Method: Alloys added Be and Nb using Ni-Cr alloy which has been widely used for dental instrument be selected and classified experimental group. Non-addition Be and Nb to Ni-Cr alloy classify control group and addition Be alloy is Be-experimental group, addition Nb alloy is Nb-experimental group. Specimens for cytotoxicity analysis gave effect to washing and sterilization. and then made an experiment on elution with cell medium after disinfection. It conducted specimens within cell medium with 24hours, 48hours, 72hours, respectively. It cultured human dermal fibroblast(HDF) using cell medium for cytotoxicity test and then investigated elution rate through spectroscopic analysis by MTT-assay. Result: As results of cytotoxicity test by MTT-assay, cultured cell rate of VII measured more low numerical value within elution medium for 24hours focused on control group. Also, cultured cell rate of K3 alloys observed low value for 48hours, 72hours than value of control group. Conclusion: According to final result that synthesize above results, Ni-Cr alloy added Be and Ni has little difference in Cytotoxicity by MTT-assay.

  • PDF

Phospholipid polymer can reduce cytotoxicity of poly (lactic acid) nanoparticles in a high-content screening assay

  • Kim, Hyung Il;Ishihara, Kazuhiko
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.1 no.2
    • /
    • pp.95-104
    • /
    • 2014
  • The objective of this study was to evaluate the cytotoxicity of poly (lactic acid) (PLA) nanoparticles. We used a water-soluble, amphiphilic phospholipid polymer, poly (2-methacryloyloxyethyl phosphorylcholine-co-n-butyl methacrylate) (PMB30W), as a stabilizer for the PLA nanoparticles. The PLA nanoparticles and PMB30W-modified PLA (PLA/PMB30W) nanoparticles were prepared by evaporating tetrahydrofuran (THF) from its aqueous solution. Precipitation of the polymers from the aqueous solution produced PLA and PLA/PMB30W nanoparticles with a size distribution of $0.4-0.5{\mu}m$. The partial coverage of PMB30W on the surface of the PLA/PMB30W nanoparticles was confirmed by X-ray photoelectron spectroscopy (XPS) and dynamic light-scattering (DLS). A high-content automated screening assay (240 random fields per group) revealed that the PLA nanoparticles induced apoptosis in a mouse macrophage-like cell line (apoptotic population: 73.9% in 0.8 mg PLA/mL), while the PLA/PMB30W nanoparticles remained relatively non-hazardous in vitro (apoptotic population: 13.8% in 0.8 mg PLA/mL). The reduction of the apoptotic population was attributed to the phosphorylcholine groups in the PMB30W bound to the surface of the nanoparticle. In conclusion, precipitation of PLA in THF aqueous solution enabled the preparation of PLA nanoparticles with similar shapes and size distribution but different surface characteristics. PMB30W was an effective stabilizer and surface modifier, which reduced the cytotoxicity of PLA nanoparticles by enabling their avoidance of the mononuclear phagocyte system.

Effects of Resveratrol and trans-3,5,4'-Trimethoxystilbene on Glutamate-Induced Cytotoxicity, Heme Oxygenase-1, and Sirtuin 1 in HT22 Neuronal Cells

  • Kim, Dae-Won;Kim, Young-Mi;Kang, Sung-Don;Han, Young-Min;Pae, Hyun-Ock
    • Biomolecules & Therapeutics
    • /
    • v.20 no.3
    • /
    • pp.306-312
    • /
    • 2012
  • Resveratrol (trans-3,5,4'-trihydroxystilbene) has received considerable attention recently for the potential neuroprotective effects in neurodegenerative disorders where heme oxygenase-1 (HO-1) and sirtuin 1 (SIRT1) represent promising therapeutic targets. Resveratrol has been known to increase HO-1 expression and SIRT1 activity. In this study, the effects of resveratrol and trans-3,5,4'-trimethoxystilbene (TMS), a resveratrol derivative, on cytotoxicity caused by glutamate-induced oxidative stress, HO-1 expression, and SIRT1 activation have been investigated by using murine hippocampal HT22 cells, which have been widely used as an in vitro model for investigating glutamate-induced neurotoxicity. Resveratrol protected HT22 neuronal cells from glutamate-induced cytotoxicity and increased HO-1 expression as well as SIRT1 activity in a concentration-dependent manner. Cytoprotection afforded by resveratrol was partially reversed by the specific inhibition of HO-1 expression by HO-1 small interfering RNA and the nonspecific blockage of HO-1 activity by tin protoporphyrin IX, but not by SIRT1 inhibitors. Surprisingly, TMS, a resveratrol derivative with methoxyl groups in lieu of the hydroxyl groups, and trans-stilbene, a non-hydroxylated analog, failed to protect HT22 cells from glutamate-induced cytotoxicity and to increase HO-1 expression and SIRT1 activity. Taken together, our findings suggest that the cytoprotective effect of resveratrol was at least in part associated with HO-1 expression but not with SIRT1 activation and, importantly, that the presence of hydroxyl groups on the benzene rings of resveratrol appears to be necessary for cytoprotection against glutamate-induced oxidative stress, HO-1 expression, and SIRT1 activation in HT22 neuronal cells.

Anti-inflammatory Effect of Shea Butter Extracts in Canine Keratinocytes

  • Lim, Dahye;Bae, Seulgi;Oh, Taeho
    • Journal of Veterinary Clinics
    • /
    • v.38 no.1
    • /
    • pp.27-31
    • /
    • 2021
  • Shea butter (Vitellaria paradoxa) is a fat extracted from shea tree nuts and contains relatively high levels of non-glycerides. Triterpenes, the main non-glyceride component, exhibit a variety of biological activities such as antitumor, antibacterial, and anti-inflammatory. Shea butter extract (SBE) has been used to treat various skin problems such as burns, eczema, and rash in human medicine, but little is known about the activity of SBE on canine skin. This study evaluated the cytotoxicity and anti-inflammatory effect of SBE in canine keratinocytes. Cytotoxicity of lipopolysaccharide (LPS, 5-50 ng/mL) and SBE (50-200 ㎍/mL) was evaluated using the CCK-8 assay. Non-cytotoxic concentrations of LPS and SBE were administered to canine cell cultures to evaluate anti-inflammatory effects. To evaluate the anti-inflammatory activity of SBE, the levels of IL-1β, IL-8, IL-12, and TNF-α were measured using ELISA kits. The concentration of each cytokine was quantified in control, LPS-treated, LPS + SBE-treated groups. Increased levels of IL-1β, IL-8, and IL-12 were found in LPS-treated groups relative to control groups. LPS + SBE-treated groups showed a lower level of IL-1β, IL-8, and IL-12 than LPS-treated groups. These results suggest that SBE may have application as a topical agent for canine inflammatory skin diseases. However, further in vivo study is needed to evaluate the safety and efficacy of SBE in dogs.

Antioxidative Effects of Parnassia palustris L. Extract on Ferrous Sulfate-Induced Cellular Injury of Cultured C6 Glioma Cells (파킨슨씨병 유발물질인 황산철로 손상된 배양 신경아교세포에 대한 물매화 추출물의 항산화 효과)

  • Young-Mi, Seo;Seung-Bum, Yang
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.54 no.4
    • /
    • pp.298-306
    • /
    • 2022
  • This study sought to evaluate the mechanism of cellular injury caused by ferrous sulfate (FeSO4) and the protective effects of Parnassia palustris L. (PP) extract against FeSO4-induced cytotoxicity of cultured C6 glioma cells. FeSO4 is known to cause neurotoxicity and induce Parkinson's disease. The antioxidative effects of PP, such as superoxide dismutase (SOD)-like and superoxide anion-radical (SAR)-scavenging activities, as well as effects on cell viability, were studied. FeSO4 significantly decreased cell viability in a dose-dependent manner and the XTT50 value, the concentration of FeSO4 which reduced the cell viability by half, was measured at 63.3 μM in these cultures. FeSO4 was estimated to be highly cytotoxic by the Borenfreund and Puerner toxicity criteria. Quercetin, an antioxidant, significantly improved cell viability, damaged by FeSO4-induced cytotoxicity. While evaluating the protective effects of the PP extract on FeSO4-induced cytotoxicity, it was observed that the extract significantly increased cell viability compared to the FeSO4-treated group. Also, the PP extract showed superoxide dismutase (SOD)-like and superoxide anion radical (SAR)-scavenging activities. Based on these findings, it can be concluded that FeSO4 induced oxidative stress-related cytotoxicity, and the PP extract effectively protected against this cytotoxicity via its antioxidative effects. In conclusion, natural antioxidant sources such as PP may be agents useful for preventing oxidative stress-related cytotoxicity induced by heavy metal compounds such as the FeSO4, a known Parkinsonism inducer.

Non-Fibrillar $\beta$-Amyloid Exerts Toxic Effect on Neuronal Cells

  • Kim, Hyeon-Jin;Hong, Seong-Tshool
    • Animal cells and systems
    • /
    • v.5 no.2
    • /
    • pp.139-143
    • /
    • 2001
  • Alzheimer's disease is the most common form of dementia and no cure is known so far. Extensive genetic works and in vitro experiments combined with clinical observations link amyloid $\beta$--protein (A$\beta$-) to the pathogenesis of Alzheimer's disease (AD). It was hypothesized that $A\beta$- becomes toxic when it adopts a fibrillar conformation. Recently, non-fibrillar form of $A\beta$- was observed and the potential role in the pathogenesis of AD became an interesting subject. In this study, the cytotoxicity of non-fibrillar $A\beta$- and fibrillar $A\beta$- was compared on oxidative stress, membrane damage, or nucleosome break down. Non-fibrillar $A\beta$- was not toxic in peripheral nervous system-derived cells but significantly toxic in central nervous system-derived cells while fibrillar $A\beta$- was non-selectively toxic in both cell culture. The neurotoxicity of non-fibrillar $A\beta$- was reproduced in semi-in vivo culture of mouse brain slice. In conclusion, non-fibrillar $A\beta$- could be more relevant to the selective neurodegeneration in Alzheimer's brains than fibrillar $A\beta$- and further research needs to be done for identification of the cause of AD.

  • PDF

The Effects of Two Plant Extracts on Tyrosinase Activity (2종 식물 추출물이 Tyrosinase 활성에 미치는 영향)

  • 차은정;김안근
    • YAKHAK HOEJI
    • /
    • v.47 no.1
    • /
    • pp.20-24
    • /
    • 2003
  • The purpose of this work was to study the effect of extracts from pharbitidis seed and watermelon's inner shell on tyrosinase activity. For this purpose, the effects of plant extracts on total melanin synthesis and tyrosinase activity were measured. The results showed that the extracts effectively inhibited the tyrosinase activity and total melanin synthesis. The non-cytotoxicity of the plant extracts was confirmed by MTT assay.

A Novel Anti-PD-L1 Antibody Exhibits Antitumor Effects on Multiple Myeloma in Murine Models via Antibody-Dependent Cellular Cytotoxicity

  • Ahn, Jae-Hee;Lee, Byung-Hyun;Kim, Seong-Eun;Kwon, Bo-Eun;Jeong, Hyunjin;Choi, Jong Rip;Kim, Min Jung;Park, Yong;Kim, Byung Soo;Kim, Dae Hee;Ko, Hyun-Jeong
    • Biomolecules & Therapeutics
    • /
    • v.29 no.2
    • /
    • pp.166-174
    • /
    • 2021
  • Multiple myeloma is a malignant cancer of plasma cells. Despite recent progress with immunomodulatory drugs and proteasome inhibitors, it remains an incurable disease that requires other strategies to overcome its recurrence and non-response. Based on the high expression levels of programmed death-ligand 1 (PD-L1) in human multiple myeloma isolated from bone marrow and the murine myeloma cell lines, NS-1 and MOPC-315, we propose PD-L1 molecule as a target of anti-multiple myeloma therapy. We developed a novel anti-PD-L1 antibody containing a murine immunoglobulin G subclass 2a (IgG2a) fragment crystallizable (Fc) domain that can induce antibody-dependent cellular cytotoxicity. The newly developed anti-PD-L1 antibody showed significant antitumor effects against multiple myeloma in mice subcutaneously, intraperitoneally, or intravenously inoculated with NS-1 and MOPC-315 cells. The anti-PD-L1 effects on multiple myeloma may be related to a decrease in the immunosuppressive myeloid-derived suppressor cells (MDSCs), but there were no changes in the splenic MDSCs after combined treatment with lenalidomide and the anti-PD-L1 antibody. Interestingly, the newly developed anti-PD-L1 antibody can induce antibody-dependent cellular cytotoxicity in the myeloma cells, which differs from the existing anti-PD-L1 antibodies. Collectively, we have developed a new anti-PD-L1 antibody that binds to mouse and human PD-L1 and demonstrated the antitumor effects of the antibody in several syngeneic murine myeloma models. Thus, PD-L1 is a promising target to treat multiple myeloma, and the novel anti-PD-L1 antibody may be an effective anti-myeloma drug via antibody-dependent cellular cytotoxicity effects.