• Title/Summary/Keyword: Non-coplanar

Search Result 63, Processing Time 0.025 seconds

Effects of PCB Congeners in Rodent Neuronal Cells in Culture

  • Kim, Sun-Young;Yang, Jae-Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.9 no.1
    • /
    • pp.9-15
    • /
    • 2005
  • We attempted to analyze the mechanism of polychlorinated biphenyl (PCB)-induced neurotoxicity and identify the target molecules in the neuronal cells for PCBs.Since the developing neuron is particularly sensitive to PCB-induced neurotoxicity, we isolated cerebellar granule cells derived from 7-day old Sprague Dawley (SD) rats and grew cells in culture for additional 7 days to mimic PND-14 conditions. Only non-coplanar PCBs at a high dose showed a significant increase of total protein kinase C (PKC) activity at phobol 12,13-dibutyrate ([$^3M$]PDBu) binding assay, indicating that non-coplanar PCBs are more neuroactive than coplanar PCBs in neuronal cells. PKC isozymes were immunoblotted with the selected monoclonal antibodies. PKC-${\alpha}$, ${\delta}$, and ε were activated with non-coplanar PCB exposure. Receptor for activated C kinase-1 (RACK-1), anchoring protein for activated PKC, was more induced with exposure to coplanar PCBs than non-coplanar PCBs. Reverse transcription PCR (RT-PCR) analysis showed induction of neurogranin (RC-3) and growth associated protein-43 (GAP-43) mRNA with non-coplanar PCBs. The results indicate that these factors may be useful biomarkers for differentiating non-coplanar PCBs from coplanar PCBs. The present study demonstrated that non-coplanar PCBs are more neuroactive congeners than coplanar PCBs.

Effects of PCB Congeners in Rodent Neuronal Cells in Culture : Effects of Chitosan (PCB 이성질체가 설치류 신경세포에 미치는 영향: 키토산의 효과)

  • Kim, Sun-Young;Lee, Hyun-Gyo
    • Environmental Analysis Health and Toxicology
    • /
    • v.22 no.3
    • /
    • pp.279-285
    • /
    • 2007
  • The present study attempted to analyze the mechanism of PCB-induced neurotoxicity with respect to the PKC signaling. Since the developing neuron is particularly sensitive to PCB-induced neurotoxicity, we isolated cerebellar granule cells derived from 7-day old SD rats and grew cells in culture for additional 7 days to mimic PND-14 conditions. Only non-coplanar PCBs at a high dose showed a significant increase of total PKC activity at $[^3H]PDBu$ binding assay, indicating that non-coplanar PCBs are more neuroactive than coplanar PCBs in neuronal cells. PKC isoforms were immunoblotted with respective monoclonal antibodies. PKC-alpha and-epsilon were activated with non-coplanar PCB exposure. The result suggests that coplanar PCBs have a PKC pathway different from non-coplanar PCBs. Activation of PKC with exposure was dampened with treatment of high molecular weight of chitosan. Chilean (M.W. > 1,000 kDa) inhibited the total activity of PKC induced by the non-coplanar PCBs. Translocation of PKC isoforms was also inhibited by the high molecular weight of chitosan. The study demonstrated that non-coplanar PCBs are more potent neurotoxic congeners than coplanar PCBs and the alteration of PKC activities by PCB exposure can be blocked with the treatment of chitosan. The results suggest a potential use of chitosan as a means of nutritional intervention to prevent the harmful effects of pollutant-derived diseases.

Dosimetric comparison of intensity-modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT) in total scalp irradiation: a single institutional experience

  • Ostheimer, Christian;Hubsch, Patrick;Janich, Martin;Gerlach, Reinhard;Vordermark, Dirk
    • Radiation Oncology Journal
    • /
    • v.34 no.4
    • /
    • pp.313-321
    • /
    • 2016
  • Purpose: Total scalp irradiation (TSI) is a rare but challenging indication. We previously reported that non-coplanar intensity-modulated radiotherapy (IMRT) was superior to coplanar IMRT in organ-at-risk (OAR) protection and target dose distribution. This consecutive treatment planning study compared IMRT with volumetric-modulated arc therapy (VMAT). Materials and Methods: A retrospective treatment plan databank search was performed and 5 patient cases were randomly selected. Cranial imaging was restored from the initial planning computed tomography (CT) and target volumes and OAR were redelineated. For each patients, three treatment plans were calculated (coplanar/non-coplanar IMRT, VMAT; prescribed dose 50 Gy, single dose 2 Gy). Conformity, homogeneity and dose volume histograms were used for plan. Results: VMAT featured the lowest monitor units and the sharpest dose gradient (1.6 Gy/mm). Planning target volume (PTV) coverage and homogeneity was better in VMAT (coverage, 0.95; homogeneity index [HI], 0.118) compared to IMRT (coverage, 0.94; HI, 0.119) but coplanar IMRT produced the most conformal plans (conformity index [CI], 0.43). Minimum PTV dose range was 66.8%-88.4% in coplanar, 77.5%-88.2% in non-coplanar IMRT and 82.8%-90.3% in VMAT. Mean dose to the brain, brain stem, optic system (maximum dose) and lenses were 18.6, 13.2, 9.1, and 5.2 Gy for VMAT, 21.9, 13.4, 14.5, and 6.3 Gy for non-coplanar and 22.8, 16.5, 11.5, and 5.9 Gy for coplanar IMRT. Maximum optic chiasm dose was 7.7, 8.4, and 11.1 Gy (non-coplanar IMRT, VMAT, and coplanar IMRT). Conclusion: Target coverage, homogeneity and OAR protection, was slightly superior in VMAT plans which also produced the sharpest dose gradient towards healthy tissue.

악조건하의 비동일평면 카메라 교정을 위한 알고리즘

  • Ahn, Taek-Jin;Lee, Moon-Kyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.12
    • /
    • pp.1001-1008
    • /
    • 2001
  • This paper presents a new camera calibration algorithm for ill-conditioned cases in which the camera plane is nearly parallel to a set of non-coplanar calibration boards. for the ill-conditioned case, most of existing calibration approaches such as Tsais radial-alignment-constraint method cannot be applied. Recently, for the ill-conditioned coplanar calibration Lee&Lee[16] proposed an iterative algorithm based on the least square method. The non-coplanar calibration algorithm presented in this paper is an iterative two-stage procedure with extends the previous coplanar calibration algorithm. Through the first stage, camera, position and orientation parameters as well as one radial distortion factor are determined optimally for a given data of the scale factor and the focal length. In the second stage, the scale factor and the focal length are locally optimized. This process is repeated until any improvement cannot be expected any more Computational results are provided to show the performance of the algorithm developed.

  • PDF

Usefulness of Non-coplanar Helical Tomotherapy Using Variable Axis Baseplate (Variable Axis Baseplate를 이용한 Non-coplanar 토모테라피의 유용성)

  • Ha, Jin-Sook;Chung, Yoon-Sun;Lee, Ik-Jae;Shin, Dong-Bong;Kim, Jong-Dae;Kim, Sei-Joon;Jeon, Mi-Jin;Cho, Yoon-Jin;Kim, Ki-Kwang;Lee, Seul-Bee
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.23 no.1
    • /
    • pp.31-39
    • /
    • 2011
  • Purpose: Helical Tomotherapy allows only coplanar beam delivery because it does not allow couch rotation. We investigated a method to introduce non-coplanar beam by tilting a patient's head for Tomotherapy. The aim of this study was to compare intrafractional movement during Tomotherapy between coplanar and non-coplanar patient's setup. Materials and Methods: Helical Tomotherapy was used for treating eight patients with intracranial tumor. The subjects were divided into three groups: one group (coplanar) of 2 patients who lay on S-plate with supine position and wore thermoplastic mask for immobilizing the head, second group (non-coplanar) of 3 patients who lay on S-plate with supine position and whose head was tilted with Variable Axis Baseplate and wore thermoplastic mask, and third group (non-coplanar plus mouthpiece) of 3 patients whose head was tilted and wore a mouthpiece immobilization device and thermoplastic mask. The patients were treated with Tomotherapy after treatment planning with Tomotherapy Planning System. Megavoltage computed tomography (MVCT) was performed before and after treatment, and the intrafractional error was measured with lateral(X), longitudinal(Y), vertical(Z) direction movements and vector ($\sqrt{x^2+y^2+z^2}$) value for assessing overall movement. Results: Intrafractional error was compared among three groups by taking the error of MVCT taken after the treatment. As the correction values (X, Y, Z) between MVCT image taken after treatment and CT-simulation image are close to zero, the patient movement is small. When the mean values of movement of each direction for non-coplanar setup were compared with coplanar setup group, X-axis movement was decreased by 13%, but Y-axis and Z-axis movement were increased by 109% and 88%, respectively. Movements of Y-axis and Z-axis with non-coplanar setup were relatively greater than that of X-axis since a tilted head tended to slip down. The mean of X-axis movement of the group who used a mouthpiece was greater by 9.4% than the group who did not use, but the mean of Y-axis movement was lower by at least 64%, and the mean of Z-axis was lower by at least 67%, and the mean of Z-axis was lower by at least 67%, and the vector was lower by at least 59% with the use of a mouthpiece. Among these 8 patients, one patient whose tumor was located on left frontal lobe and left basal ganglia received reduced radiation dose of 38% in right eye, 23% in left eye, 30% in optic chiasm, 27% in brain stem, and 8% in normal brain with non-coplanar method. Conclusion: Tomotherapy only allows coplanar delivery of IMRT treatment. To complement this shortcoming, Tomotherapy can be used with non-coplanar method by artificially tilting the patient's head and using an oral immobilization instrument to minimize the movement of patient, when intracranial tumor locates near critical organs or has to be treated with high dose radiation.

  • PDF

NON-COPLANAR MAGNETIC RECONNECTION AS A MAGNETIC TWIST ORIGIN

  • CHAE JONGCHUL
    • Journal of The Korean Astronomical Society
    • /
    • v.32 no.2
    • /
    • pp.137-147
    • /
    • 1999
  • Recent studies show the importance of understanding three-dimensional magnetic reconnect ion on the solar surface. For this purpose, I consider non-coplanar magnetic reconnection, a simple case of three-dimensional reconnect ion driven by a collision of two straight flux tubes which are not on the same plane initially. The relative angle e between the two tubes characterizes such reconnection, and can be regarded as a measure of magnetic shear. The observable characteristics of non-coplanar reconnection are compared between the two cases of small and large angles. An important feature of the non-coplanar reconnect ion is that magnetic twist can be produced via the re-ordering of field lines. This is a consequence of the conversion of mutual helicity into self helicities by reconnection. It is shown that the principle of energy conservation when combined with the production of magnetic twist puts a low limit on the relative angle between two flux tubes for reconnect ion to occur. I provide several observations supporting the magnetic twist generation by reconnection, and discuss its physical implications for the origin of magnetic twist on the solar surface and the problem of coronal heating.

  • PDF

Dosimetric comparison of coplanar and non-coplanar volumetric-modulated arc therapy in head and neck cancer treated with radiotherapy

  • Gayen, Sanjib;Kombathula, Sri Harsha;Manna, Sumanta;Varshney, Sonal;Pareek, Puneet
    • Radiation Oncology Journal
    • /
    • v.38 no.2
    • /
    • pp.138-147
    • /
    • 2020
  • Purpose: To evaluate the dosimetric variations in patients of head and neck cancer treated with definitive or adjuvant radiotherapy using optimized non-coplanar (ncVMAT) beams with coplanar (cVMAT) beams using volumetric arc therapy. Materials and Methods: Twenty-two patients of head and neck cancer that had received radiotherapy using VMAT in our department were retrospectively analyzed. Each of the patients was planned using coplanar and non-coplanar orientations using an optimized couch angle and fluences. We analyzed the Conformity Index (CIRTOG), Dose Homogeneity Index (DHI), Heterogeneity Index (HIRTOG), low dose volume, target and organs-at-risk coverage in both the plans without changing planning optimization parameters. Results: The prescription dose ranged from 60 Gy to 70 Gy. Using ncVMAT, CIRTOG, DHI and HIRTOG, and tumor coverage (ID95%) had improved, low dose spillage volume in the body V5Gy was increased and V10Gy was reduced. Integral dose and intensity-modulated radiation therapy factor had increased in ncVMAT. In the case of non-coplanar beam arrangements, maximum dose (Dmax) of right and left humeral head were reduced significantly whereas apex of the right and left lung mean dose were increased. Conclusion: The use of ncVMAT produced better target coverage and sparing of the shoulder and soft tissue of the neck as well as the critical organ compared with the cVMAT in patients of head and neck malignancy.

K-band Coplanar Stripline Resonator for Microwave Tunable Devices (마이크로파 가변 소자용 K-band Coplanar Stripline 공진기 설계)

  • Kang, Chong-Yun;Yoon, Seok-Jin;Kim, Hyun-Jai
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.6
    • /
    • pp.532-537
    • /
    • 2005
  • In order to develop a tunable resonator which can be easily operated by DC bias and applied for microwave tunable filters and devices using ferroelectric thin or thick films, the non conductor backed-and conductor backed- coplanar stripline resonators have been designed and analyzed. They have been designed to be operated at 25 GHz which involve coplanar stripline input and output ports. The resonators have been simulated and analyzed using Ansoft HFSS. The research has been focused on the Quality factor of the coplanar stripline resonator. The conductor Q, box Q, and radiation Q of the resonators have been analyzed and calculated according to the substrate thickness & conductor width of the resonators. From these parameters, the loss factors of the coplanar stripline resonator have been investigated. The conducting Q of the coplanar stripline resonator has no relation with the thickness of dielectric substrate and increases as the conductor width increases. The box Q has no much relation with the thickness of substrate and the conductor width, which is above 2000. The radiation loss increases as the thickness of substrate and the conductor width increase. To decrease the radiation loss of the coplanar stripline resonator, a conductor backed coplanar stripline resonator has been proposed which has the unloaded Q of 170.

Evaluation of the accuracy of the HexaPOD evo RT system using Non-coplanar beams in lung cancer (폐암환자의 비동일평면 선속 빔 치료 시 HexaPOD evo RT system 의 정확성 평가)

  • Jang, Sewuk;cho, Kangchul;Lee, Sangkyoo;Kim, Jooho;Cho, Jeonghee
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.27 no.2
    • /
    • pp.115-122
    • /
    • 2015
  • Purpose : The aim of this study, evaluate the accuracy of HeaxPOD evo RT system using the non-coplanar beam. Materials and Methods : 13 treatment plans are used which applied non-coplanar beams and 10 treatment plans which coplanar beams are used. the correction value what adjust to 6D couch is determined by each patient's setup errors only rotation direction. The study executed followings. first, Applying the correction value, measure the point dose and calculate the ${\gamma}$-index(${\gamma}=3%$ / 3 mm, ${\gamma}=2%$ / 2 mm). second, acquire data as previous methods without correction by HexaPOD. Results : For comparing the two results, we find out the more precise applying HexaPOD by point dose 0.2% in coplanar and non-coplanar. in the case of ${\gamma}$-index<1(${\gamma}=3%$ / 3 mm), more precise 2.2% in coplanar and 7% in Non-coplanar. Particularly, ${\gamma}$-index<1(2% / 2 mm) show the difference 9.2% in coplanar and 15.1% non-coplanar between apply HexaPOD and dose not apply HexaPOD. Conclusion : Using the HexaPOD is more precise than without HexaPOD. It suggests that HexaPOD evo RT system is very useful for precise and high dose delivery.

  • PDF

Geometrical Limitations in Non-coplanar Treatment (비동일 평면 치료에서의 기하학적인 제약)

  • 이병용
    • Progress in Medical Physics
    • /
    • v.8 no.1
    • /
    • pp.31-35
    • /
    • 1997
  • Purpose: To analyse the geometrical limitations in non-coplanar treatment for applying this result to treatment planning. Material and Method: The ranges of gantry movement were mesured for the treatment sites with or without EPID and various couch angle. Resultas and conclusitn : The gantry range of motions for various situations were quantitized for applying these results to treatment planning.

  • PDF