• Title/Summary/Keyword: Non-contacting

Search Result 146, Processing Time 0.024 seconds

Comparison of contacting and non-contacting methods in measuring the surface roughness of texture (섬유의 거칠기 측정에 있어서 비접촉식 방식과 접촉식 방식의 비교)

  • 박연규;강대임;송후근;권영하
    • Science of Emotion and Sensibility
    • /
    • v.2 no.1
    • /
    • pp.105-111
    • /
    • 1999
  • In order to introduce the touch to engineering and industries, it must be preceded to dstablish a quantitative barometer of the feeling. for this purpose, we developed a tactile measuring system to measure physical properties of texture, such as surface roughness, friction coefficient and compliance. The tactile measuring system uses a LASER type displacement sensor, which is a non-contacting system, in measuring the surface roughness. By considering that human tactile system is a contacting mechanism, this non-contacting method needs to be modified. As a precedent research of that, we compared the contacting and non-contacting method in this paper. Surface roughness of ten cloths were measured by using the measuring system, then compared to the test results using the Kawabata evaluation system(KES), which uses a contacting method in measuring the surface roughness.

  • PDF

New method of optical laser extensometer

  • Noh, jiwhan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.79.2-79
    • /
    • 2002
  • 1. the principal of a PSD(Position Sensitive Detector) 2. the optical system of the proposed method 3. signal processing 4. experimental result A mechanical engineer experiment on the tension test. In this experiment, they use the extensometer which can measure the extended distance of material. A normal extensometer is the contact type which means that the extensometer should attached to the specimen. It is not convenient to the user. The contacting type can also effect the characteristic of the specimen. So a extensometer is changed from contacting type to non-contacting type. Non-contacting type is not necessary to attach the extensometer to the specimen...

  • PDF

Non-contacting OMM (On Machine Measurement) based on CAD Model (CAD 모델 기반 비접촉 기상 측정에 관한 연구)

  • 권세진;이정근;박정환;고태조;김선호
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.11
    • /
    • pp.134-141
    • /
    • 2003
  • An industrial product is designed and fabricated, followed by the inspection process in order to check whether it is dimensionally tolerable or not. The machining process produces a part such as a mold or die, in which the three-dimensional coordinate might be measured by a CMM (Coordinate Measuring Machine) for assessment of its dimension. It is not ignorable, however, that a CMM measurement requires a lot of operating time and cost, which has led to many studies on the OMM system. The OMM system can be categorized into contact and non-contact types, and each of which has its own strengths and weaknesses. Non-contacting types generally utilize structured lights, sounds or magnetic fields. Though they show rather poor performance in positional accuracy, the measuring speed is faster than the contacting probes. This paper presents the development of an OMM system based on a non-contacting laser displacement sensing apparatus and CAD model. The system is composed of software modules of center-aligning and measuring, which has been operated and verified on a NC machining center on a shop floor.

Non-Steady Elastohydrodynamic Lubrication Analysis on Spur Gear Teeth

  • Kim, H.J.;Kim, Y.D.;Koo, Y.P.;Choi, H.C.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.81-82
    • /
    • 2002
  • A non-steady 3-dimensional elastohydrodynamic lubrication analysis was performed on the contacting teeth surfaces of involute spur gears. Kinematics of the gear and the pinion were taken into account to get accurate geometric clearance around the elastohydrodynamic lubrication region of the contacting teeth. Pressure and film thickness distribution for the whole contacting faces in lubricated condition at several time steps were obtained through the analysis. Besides the pressure spike at the outlet region, a representative phenomenon in elastohydrodynamic lubrication regime, the pressure at the inlet region was slight higher than that of the center region. The film thickness of non-steady condition was thicker than that of steady condition.

  • PDF

Development of a Non-contacting Capacitive Sensor for Measurement of ${\mu}{\textrm}{m}$-order Displacements (마이크로미터 변위 측정을 위한 비접촉식 전기용량 센서 개발)

  • 김한준;이래덕;강전홍;한상옥
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.768-771
    • /
    • 2001
  • Non-contacting capacitive sensor, based on principle of the cross capacitor, for measuring of $\mu\textrm{m}$-order displacements have been fabricated and characterized. To overcome disadvantages of the existed capacitive sensors of parallel type with 2-electrodes and 3-electrodes, the developed new sensor was designed to have 4-electrodes, two of them used high and low electrode the other two used as guard electrodes, on a sapphire plate with diameter 17 mm and thickness 0.7 mm, and are symmetrically situated with a constant gap of 0.2 mm between the electrodes. This sensor can be used for measuring the distance between sensor and target not only the metallic but also non-metallic target without ground connection.

  • PDF

Development of Non-Contacting Automatic Inspection Technology of Precise Parts (정밀부품의 비접촉 자동검사기술 개발)

  • Lee, Woo-Sung;Han, Sung-Hyun
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.6
    • /
    • pp.110-116
    • /
    • 2007
  • This paper presents a new technique to implement the real-time recognition for shapes and model number of parts based on an active vision approach. The main focus of this paper is to apply a technique of 3D object recognition for non-contacting inspection of the shape and the external form state of precision parts based on the pattern recognition. In the field of computer vision, there have been many kinds of object recognition approaches. And most of these approaches focus on a method of recognition using a given input image (passive vision). It is, however, hard to recognize an object from model objects that have similar aspects each other. Recently, it has been perceived that an active vision is one of hopeful approaches to realize a robust object recognition system. The performance is illustrated by experiment for several parts and models.

Elastohydrodynamic Lubrication Analysis on the Contacting Surfaces between Spur Gear Teeth (스퍼 기어 치면 사이의 탄성유체 윤활해석)

  • Kim, Hyung-Ja;Kim, Young-Dae;Koo, Young-Pil
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.200-206
    • /
    • 2002
  • Pressure and film thickness of contacting surfaces between teeth of the involute spur gear in lubricated condition were studied by a numerical method. Dynamics of the gear and pinion was considered to gel ail accurate initial clearance between gear teeth. The 3-dimensional non-steady elastohydrodanamic lubrication analysis on the gear teeth showed a slight higher pressure at the inlet region of the contacting face as well as pressure spike at the outlet region and a more thick film thickness than that of steady condition.

  • PDF

Feature Recognition for Digitizing Path Generation in Reverse Engineering (역공학에서 측정경로생성을 위한 특징형상 인식)

  • Kim Seung Hyun;Kim Jae Hyun;Park Jung Whan;Ko Tae Jo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.12
    • /
    • pp.100-108
    • /
    • 2004
  • In reverse engineering, data acquisition methodology can generally be categorized into contacting and non-contacting types. Recently, researches on hybrid or sensor fusion of the two types have been increasing. In addition, efficient construction of a geometric model from the measurement data is required, where considerable amount of user interaction to classify and localize regions of interest is inevitable. Our research focuses on the classification of each bounded region into a pre-defined feature shape fer a hybrid measuring scheme, where the overall procedures are described as fellows. Firstly, the physical model is digitized by a non-contacting laser scanner which rapidly provides cloud-of-points data. Secondly, the overall digitized data are approximated to a z-map model. Each bounding curve of a region of interest (featured area) can be 1.aced out based on our previous research. Then each confined area is systematically classified into one of the pre-defined feature types such as floor, wall, strip or volume, followed by a more accurate measuring step via a contacting probe. Assigned to each feature is a specific digitizing path topology which may reflect its own geometric character. The research can play an important role in minimizing user interaction at the stage of digitizing path planning.

Development of a Non-contacting Capacitive Sensor Based on Thompson-Lampard Theorem for Measurement of ${\mu}m-order$ Displacements (Thompson-Lampard 정리를 적용한 마이크로미터 변위 측정을 위한 비접촉식 전기용량 센서 개발)

  • Kim, Han-Jun;Kang, Jeon-Hong;Han, Sang-Ok
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.9
    • /
    • pp.443-448
    • /
    • 2006
  • Non-contacting capacitive sensor based on Thompson-Lampard theorem have been fabricated and characterized for measuring of 때 order displacements. To overcome disadvantages of the existed capacitive sensors of parallel plate type with 2-electrodes and 3-electrodes, the developed new sensor was designed to have 4-electrodes with a constant gap of 0.2mm between the electrodes. Two of the electrodes were used as a high potential electrode and a low one, the other two electrodes were used as guard electrodes. These electrodes were made from copper using RF sputtering system on a sapphire plate with diameter 17 mm and thickness 0.7 mm. This sensor can be used for measuring the distance not only between the sensor and metallic target connected to ground potential but also non-metallic target without ground connection.