• Title/Summary/Keyword: Non-conductive paste

Search Result 23, Processing Time 0.02 seconds

Setting Characteristic Assessment of Cementitious Materials using Piezoelectric Sensor (압전소자를 이용한 시멘트계 재료의 응결 특성 평가)

  • Lee, Chang Joon;Lee, Jun Cheol;Shin, Sung Woo;Kim, Wha Jung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.5
    • /
    • pp.389-395
    • /
    • 2016
  • The evolution of electro-mechanical impedance (EMI) of the piezoelectricity (PZT) sensor was investigated to determine the setting times of cementitious materials in this study. The PZT sensor coated with non-conductive acrylic resin was embedded in cement paste before casting and the EMI signatures were continuously measured. Vicat needle test and semi-adiabatic calorimetry test were also conducted to justify the validity of EMI senssing technique in setting monitoring of cementitious materials. The results show that significant changes in EMI resonant peak magnitude and frequency during setting process were observed, and that the setting times determined by EMI sensing technique were relevant to the setting times measured by Vicat needle test and semi-adiabatic calorimetry test.

Effects of silica fillers on the reliability of COB flip chip package using NCP (NCP 적용 COB 플립칩 패키지의 신뢰성에 미치는 실리카 필러의 영향)

  • Lee, So-Jeong;Kim, Jun-Ki;Lee, Chang-Woo;Kim, Jeong-Han;Lee, Ji-Hwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.158-158
    • /
    • 2008
  • 모바일 정보통신기기를 중심으로 실장모듈의 초소형화, 고집적화로 인해 접속단자의 피치가 점점 미세화 됨에 따라 플립칩 본딩용 접착제에 함유되는 무기충전제인 실리카 필러의 크기도 미세화되고 있다. 본 연구에서는 NCP (non-conductive paste)의 실리카 필러의 크기가 COB(chip-on-board) 플립칩 패키지의 신뢰성에 미치는 영향을 조사하였다. 실험에 사용된 실리카 필러는 Fused silica 3 종과 Fumed silica 3종이며 response surface 실험계획법에 따라 혼합하여 최적의 혼합비를 정하였다. 테스트베드로 사용된 실리콘 다이는 투께 $700{\mu}m$, 면적 5.2$\times$7.2mm로 $50\times50{\mu}m$ 크기의 Au 도금범프를 $100{\mu}m$ 피치, peripheral 방식으로 형성시켰으며, 기판은 패드를 Sn으로 finish 하였다. 기판을 플라즈마 전처리 후 Panasonic FCB-3 플립칩 본더를 이용하여 플립칩 본딩을 수행하였다. 패키지의 신뢰성 평가를 위해 $-40^{\circ}C{\sim}80^{\circ}C$의 열충격시험과 $85^{\circ}C$/85%R.H.의 고온고습시험을 수행하였으며 Die shear를 통한 접합 강도와 4-point probe를 통한 접속저항을 측정하였다.

  • PDF

Synthesis and Characterization of the Co-electrolessly Deposited Metallic Interconnect for Solid Oxide Fuel Cell (무전해 코발트 코팅된 금속계 SOFC분리판의 제조 및 특성 평가)

  • Han, Won-Kyu;Ju, Jeong-Woon;Hwang, Gil-Ho;Seo, Hyun-Seok;Shin, Jung-Chul;Jun, Jae-Ho;Kang, Sung-Goon
    • Korean Journal of Materials Research
    • /
    • v.20 no.7
    • /
    • pp.356-363
    • /
    • 2010
  • For this paper, we investigated the area specific resistance (ASR) of commercially available ferritic stainless steels with different chemical compositions for use as solid oxide fuel cells (SOFC) interconnect. After 430h of oxidation, the STS446M alloy demonstrated excellent oxidation resistance and low ASR, of approximately 40 $m{\Omega}cm^2$, of the thermally grown oxide scale, compared to those of other stainless steels. The reason for the low ASR is that the contact resistance between the Pt paste and the oxide scale is reduced due to the plate-like shape of the $Cr_2O_3$(s). However, the acceptable ASR level is considered to be below 100 $m{\Omega}cm^2$ after 40,000 h of use. To further improve the electrical conductivity of the thermally grown oxide on stainless steels, the Co layer was deposited on the stainless steel by means of an electroless deposition method; it was then thermally oxidized to obtain the $Co_3O_4$ layer, which is a highly conductive layer. With the increase of the Co coating thickness, the ASR value decreased. For Co deposited STS444 with 2 ${\mu}m$hickness, the measured ASR at $800^{\circ}$ after 300 h oxidation is around 10 $m{\Omega}cm^2$, which is lower than that of the STS446M, which alloy has a lower ASR value than that of the non-coated STS. The reason for this improved high temperature conductivity seems to be that the Mn is efficiently diffused into the coating layer, which diffusion formed the highly conductive (Mn,Co)$_3O_4$ spinel phases and the thickness of the $Cr_2O_3$(S), which is the rate controlling layer of the electrical conductivity in the SOFC environment and is very thin