• Title/Summary/Keyword: Non-compaction

Search Result 106, Processing Time 0.028 seconds

Engineering Properties of Sewage Sludge Landfill Ground in Nanji-Do (난지도 하수슬러지 매립지반의 공학적 특성)

  • Song, Young-Suk;Yun, Jung-Mann
    • The Journal of Engineering Geology
    • /
    • v.17 no.1 s.50
    • /
    • pp.125-133
    • /
    • 2007
  • The environmental and geotechnical properties are investigated to the 8th landfill area made of only sewage sludge in Nanji-Do. To do this, the soils are sampled in this area, and leaching tests, heavy metal content tests, and so on are performed to research the environmental properties. As the result of heavy metal content tests, Pb, Zn, Cu, Ni, Cd and Cr were leached from the sewage sludge. Because the leaching concentration of Cu is more than the standard value of California state, Cu content have to bring down during the recycling of the sewage sludge. Meanwhile, a series of tests concerning specific gravity, liquid and plastic limits, compaction, permeability and shear strength is performed to research the geotechnical properties. The sewage sludge is consisted of sand, silt and clay, and is classified into non-organic silt or organic clay with 42.3% of plastic index. As the result of compaction test, it is expected that the compaction effect according to variation of water contents is low relatively because the dry unit weight is low and the curve of compaction forms flatness. Also, as the result of direct shear tests, the cohesion is $0.058kg/cm^2$, and the internal friction angle is $14^{\circ}$. Taking everything into consideration, the various problems are happening in case of recycling the sludge like the cover layer of landfill and so on because the compaction is bad, and the shear strength is low. Also, it is expected that the ground water pollution caused by leaching the heavy metal into the sludge. To do recycling the sewage sludge in this site, supplementary and treatment programs should be prepared.

An Experimental Study on the Properties of Porous Concrete according to the Mix Factors and Compaction Load (배합조건 및 다짐하중에 따른 포러스 콘크리트의 특성에 관한 실험적 연구)

  • Lim, Seo-Hyung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.3
    • /
    • pp.83-91
    • /
    • 2015
  • Porous concrete consists of cement, water and coarse aggregate and has been used for the purpose of decreasing the earth environmental load such as air and water permeability, sound absorption, etc. However, the physical and mechanical properties of porous concrete changes due to compaction load during construction. For such a reason, the purpose of this study is to investigate the physical and mechanical properties of porous concrete according to the kinds of binder, the ratio of water to binder and target void ratio. In particular, this study has been carried out to investigate the influence of compaction load on the void ratio, strength and coefficient of permeability. Aggregate used in this study are by-products generated during production of crushed gravel with a maximum size of 13mm. The results of this study showed that the target void ratio, the coefficient of permeability and compressive strength of porous concrete had a close relationship with the void ratio, and it will be possible that the void ratio is suggested by the mix design of porous concrete. The compressive strength of porous concrete was the highest at the content of the expansive admixture of 5% and compared to non-mixture, 10% mixture of silica fume improved compressive strength about 32%. And in the result of the study to change the compaction load, the compressive strength increased from the load of 15kN, the void ratio decreased from the load of 0.8kN, the coefficient of permeability decreased from the load 35kN, respectively.

Effects of Surface Compaction Treatment on Soil Loss from Disturbed Bare Slopes under Simulated Rainfalls (인공강우 시 나지교란사면 토사유출에 미치는 다짐처리의 영향)

  • Park, Sang Deog;Shin, Seung Sook;Kim, Seon Jeong;Choi, Byoungkoo
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.5
    • /
    • pp.559-568
    • /
    • 2013
  • Surface compaction significantly impacts runoff and soil erosion under rainfall since it leads to changes of soil physical characteristics such as increase of bulk density and shear stress, change of microporosity, and decrease of hydraulic conductivity. This study addressed surface compaction effects on runoff and soil loss from bare and disturbed soils that are commonly distributed on construction sites. Thirty-six rainfall simulations from three replicates of each involving rainfall intensities (68.5 mm/hr, 95.6 mm/hr) and plot gradients ($5^{\circ}$, $12.5^{\circ}$, $20^{\circ}$) were conducted to measure runoff and soil loss for two different soil surface treatments (compacted surface, non-compacted surface). Compacted surface increased significantly soil bulk density and soil strength. However, the effect of surface treatments on runoff changed with rainfall intensity and plot gradient. Rainfall intensity and plot gradient had a positive effect on mean soil loss. In addition, the effect of surface treatments on soil loss responded differently with rainfall intensity and plot gradient. Compacted surfaces increased soil loss at gentle slope ($5^{\circ}$) while they decreased soil loss at steep slope ($20^{\circ}$). These results indicate that there exists transitional slope range ($10{\sim}15^{\circ}$) between gentle and steep slope by surface compaction effects on soil loss under disturbed bare soils and simulated rainfalls.

Optimal Use of Stress Waves in Non-Intrusive Seismic Techniques for Geotechnical Applications

  • Joh, Sung-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.10a
    • /
    • pp.434-478
    • /
    • 2006
  • Stress waves have been used for geophysical and geotechnical applications for more than 50 years. The early-stage applications were simply based on travel-time measurements of stress waves and limited to site characterization. Currently stress-wave techniques are expanded to monitoring processes for grouting of damaged geotechnical structures, compaction of embankment, and deformational analyses for static geotechnical problems. Seismic techniques used to be good enough for rough estimators of engineering properties. Nowadays, the sophisticated modeling theory of stress-wave propagation substantially improved reliability and accuracy of the seismic techniques. In this paper, difficulties involved in currently available seismic techniques are discussed and analyzed. Herein some recently-developed non-intrusive seismic techniques, which make optimal use of stress waves for further improvement of reliability and accuracy, are also presented.

  • PDF

Framework of Non-Nuclear Methods Evaluation for Soil QC and QA in Highway Pavement Construction

  • Cho, Yong-K.;Kabassi, Koudous;Wang, Chao
    • Journal of Construction Engineering and Project Management
    • /
    • v.2 no.2
    • /
    • pp.45-52
    • /
    • 2012
  • This study introduces a methodology to evaluate different types of non-nuclear technologies to see how they are competitive to the nuclear technology for quality control (QC) and quality assurance (QA) in soil condition measurement for highway pavement construction. The non-nuclear methods including the Electrical Density Gauge (EDG) and the Light Weight Deflectometer (LWD) were tested for their performance against a nuclear gauge, and traditional methods were used as baselines. An innovative way of comparing a deflection gauge to a density gauge was introduced. Results showed that the nuclear gauge generally outperformed the non-nuclear gauge in accuracies of soil density and moisture content measurements. Finally, a framework was developed as a guideline for evaluating various types of non-nuclear soil gauges. From other perspectives rather than accuracy, it was concluded that the non-nuclear gauges would be better alternative to the nuclear gauge when the followings are considered: (1) greater life-cycle cost savings; (2) elimination of intense federal regulations and safety/security concerns; and (3) elimination of licensing and intense training.

A Study on the Proper Resin Film Thickness in RFI Process (RFI 공정시 적정 수지필름 두께에 관한 연구)

  • Yoon, S.H.;Lee, J.W.;Kim, J.S.;Kim, W.D.;Um, M.K.
    • Composites Research
    • /
    • v.31 no.1
    • /
    • pp.23-29
    • /
    • 2018
  • The RFI process can be applied to very thick structures without limiting the resin viscosity. When the proper thickness of the resin film cannot be set, the resin film creates either the non-impregnated section or the excessive resin contents and this leads to the deterioration of mechanical properties. Therefore, this study proposed a method for setting the resin film thickness in the RFI process. The fiber compaction behavior test was proposed by setting the proper resin film thickness and the properties of composites were evaluated through short beam shear strength test, compression test and porosity measurement to verify the proposed method. The evaluation of physical properties of composites was conducted and an appropriate level of resin film thickness was found based on the results of fiber compaction behavior test.

Characteristics of Soil Disturbance Caused by Passages of Harvester and Forwarder in Cut-to-Length Harvesting Operations (단목생산작업에 있어서 하베스터와 포워더의 임내주행에 따른 토양교란 특성)

  • Han, Sang-Kyun;Lee, Kyeong-Cheol;Oh, Jae-Heun;Mun, Ho-Seong;Lee, Sang-Tae;Choi, Yun-Sung;Choi, Byoung-Koo
    • Journal of Korean Society of Forest Science
    • /
    • v.108 no.1
    • /
    • pp.67-76
    • /
    • 2019
  • With an increasing demand of timber production, the use of heavy machinery in forest management has significantly increased, causing the changes of soil physical properties and the decline of long-term site productivity. This study was conducted to evaluate the effects of logging slash (non-slash, slash $7.3kg/m^2$, and slash $11.5kg/m^2$) and machine passes(harvester 1 pass and forwarder 1 to 10 passes) on soil physical properties at 10 cm, 20 cm and 30 cm soil depths in harvester and forwarder operations and also to estimate the degree of soil surface disturbance. The results indicated that soil bulk density in the non-slash treatment site increased 10 %~29 % (25~139 % in soil penetration resistance) at all soil depths, compared with the slash treatment site(slash $11.5kg/m^2$). Therefore, the creation of a slash mat could be an effective way to minimize the changes of soil physical properties. In addition, 92 % of total soil compaction in slash treatment site was created within harvester 1 pass and forwarder 5 passes. In non-slash treatment site, 84 % of total soil compaction was created within first harvester and forwarder passes. The results showed that slash treatment was effective to reduce soil compaction caused by machine passes and also it is necessary to create designed forwarding trails for minimizing soil compaction area at timber harvesting sites.

Shock-wave Synthesis of Titanium Diboride in Copper Matrix and Compaction of $TiB_2$-Cu Nanocomposites

  • Lomovsky, O.I.;Mali, V.I.;Dudina, D.V.;Korchagin, M.A.;Kwon, D.H.;Kim, J.S.;Kwon, Y.S.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1084-1085
    • /
    • 2006
  • We studied formation of nanostructured $TiB_2$-Cu composites under shock wave conditions. We investigated the influence of preliminary mechanical activation (MA) of Ti-B-Cu powder mixtures on the peculiarities of the reaction between Ti and B under shock wave. In the MA-ed mixture the reaction proceeded completely while in the non-activated mixture the reagents remained along with the product . titanium diboride. The size of titanium diboride particles in the central part of the compact was 100-300 nm.

  • PDF

Non-destructive evaluation of concrete quality using PZT transducers

  • Tawie, R.;Lee, H.K.;Park, S.H.
    • Smart Structures and Systems
    • /
    • v.6 no.7
    • /
    • pp.851-866
    • /
    • 2010
  • This paper presents a new concept of using PZT (lead zircornate titanate) transducers as a non-destructive testing (NDT) tool for evaluating quality of concrete. Detection of defects in concrete is very important in order to check the integrity of concrete structures. The electro-mechanical impedance (EMI) response of PZT transducers bonded onto a concrete specimen can be used for evaluating local condition of the specimen. Measurements are carried out by electrically exciting the bonded PZT transducers at high frequency range and taking response measurements of the transducers. In this study, the compression test results showed that concrete specimens without sufficient compaction are likely to fall below the desired strength. In addition, the strength of concrete was greatly reduced as the voids in concrete were increased. It was found that the root mean square deviation (RMSD) values yielded between the EMI signatures for concrete specimens in dry and saturated states showed good agreement with the specimens' compressive strength and permeable voids. A quality metric was introduced for predicting the quality of concrete based on the dry-saturated state of concrete specimens. The simplicity of the method and the current development towards low cost and portable impedance measuring system, offer an advantage over other NDE methods for evaluating concrete quality.

Estimation of Air Voids of Asphalt Concrete Using Non-destructive Density Testing (비파괴 밀도시험을 통한 아스팔트 콘크리트의 공극률 추정 연구)

  • Na, Il-ho;Lee, Sung-Jin;Yoon, Ji-Hyeon;Kim, Kwang-Woo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.6
    • /
    • pp.111-119
    • /
    • 2018
  • The air-void is known to be one of the influencing factors for estimating long-term performance of asphalt concrete. Most of all, confirming air void or density of pavement layer is important for quality control of field compaction level of asphalt concrete pavement. In this study, a non-nuclear type non-destructive density gage (NDDG) was used to estimate compacted air-voids of asphalt pavement as a non-destructive test method. Asphalt concrete slab specimens were prepared using 6 types of asphalt mixes in laboratory (lab) for lab NDDG test. Four different base structure materials were used to find out if there were any differences due to the type of base structure materials. The actual air-voids and NDDG air-voids were measured from 6 asphalt concrete slabs. Four sections of field asphalt pavements were tested using the NDDG, and actual air voids were also measured from field cores taken from the site where the NDDG air-void was measured. From lab and field experimental tests, it was found that the air-voids obtained by NDDG were not the same as the actual air-voids measured from the asphalt concrete specimen. However, it was possible to estimate air voids based on the relationship obtained from regression analysis between actual and NDDG air voids. The predicted air-voids based on the NDDG air-voids obtained from 50mm depth were found to be reliable levels with $R^2{\fallingdotseq}0.9$. Therefore, it was concluded that the air-voids obtained from NDDG could be used to estimate actual air-voids in the field asphalt pavement with a relatively high coefficient of determination.