• Title/Summary/Keyword: Non-common error

Search Result 57, Processing Time 0.027 seconds

Effect of Sleep Disturbance on Fatigue, Sleepiness, and Near-Miss among Nurses in Intensive Care Units (중환자실 간호사의 수면장애가 피로, 졸음과 근접오류에 미치는 영향)

  • Mun, Gyoung Mi;Choi, Su Jung
    • Journal of Korean Critical Care Nursing
    • /
    • v.13 no.3
    • /
    • pp.1-10
    • /
    • 2020
  • Purpose : This study aims to investigate the differences in fatigue, sleepiness, and near-miss according to sleep disturbance among shift nurses in intensive care units (ICUs). Methods : A cross-sectional study in a tertiary hospital was performed. A total of 122 shift nurses working in the six ICUs were recruited. They completed self-reported questionnaires about sleep disturbance, fatigue, sleepiness, and near-miss in the past two weeks. Results : The prevalence of reported sleep disturbance was 30.3% (37 out of 122 subjects). Compared to the non-sleep disturbance group, the sleep disturbance group reported significantly more sleepiness (11.46 vs. 8.86) and higher fatigue (82.62 vs. 69.39). The sleep disturbance group showed higher rates of near-miss (78.4 vs. 57.6%) and a higher frequency of them (4.49 vs. 2.11/2weeks) compared to the non-sleep disturbance group. Medication error was the most common type of near-miss. Conclusions : This study suggests that sleep disturbances could increase fatigue, sleepiness, and near-miss among ICU shift nurses. Personal and organizational programs should be developed to support the sleep of ICU nurses.

Machine learning in concrete's strength prediction

  • Al-Gburi, Saddam N.A.;Akpinar, Pinar;Helwan, Abdulkader
    • Computers and Concrete
    • /
    • v.29 no.6
    • /
    • pp.433-444
    • /
    • 2022
  • Concrete's compressive strength is widely studied in order to understand many qualities and the grade of the concrete mixture. Conventional civil engineering tests involve time and resources consuming laboratory operations which results in the deterioration of concrete samples. Proposing efficient non-destructive models for the prediction of concrete compressive strength will certainly yield advancements in concrete studies. In this study, the efficiency of using radial basis function neural network (RBFNN) which is not common in this field, is studied for the concrete compressive strength prediction. Complementary studies with back propagation neural network (BPNN), which is commonly used in this field, have also been carried out in order to verify the efficiency of RBFNN for compressive strength prediction. A total of 13 input parameters, including novel ones such as cement's and fly ash's compositional information, have been employed in the prediction models with RBFNN and BPNN since all these parameters are known to influence concrete strength. Three different train: test ratios were tested with both models, while different hidden neurons, epochs, and spread values were introduced to determine the optimum parameters for yielding the best prediction results. Prediction results obtained by RBFNN are observed to yield satisfactory high correlation coefficients and satisfactory low mean square error values when compared to the results in the previous studies, indicating the efficiency of the proposed model.

Gauss-Newton Based Emitter Location Method Using Successive TDOA and FDOA Measurements (연속 측정된 TDOA와 FDOA를 이용한 Gauss-Newton 기법 기반의 신호원 위치추정 방법)

  • Kim, Yong-Hee;Kim, Dong-Gyu;Han, Jin-Woo;Song, Kyu-Ha;Kim, Hyoung-Nam
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.7
    • /
    • pp.76-84
    • /
    • 2013
  • In the passive emitter localization using instantaneous TDOA (time difference of arrival) and FDOA (frequency difference of arrival) measurements, the estimation accuracy can be improved by collecting additional measurements. To achieve this goal, it is required to increase the number of the sensors. However, in electronic warfare environment, a large number of sensors cause the loss of military strength due to high probability of intercept. Also, the additional processes should be considered such as the data link and the clock synchronization between the sensors. Hence, in this paper, the passive localization of a stationary emitter is presented by using the successive TDOA and FDOA measurements from two moving sensors. In this case, since an independent pair of sensors is added in the data set at every instant of measurement, each pair of sensors does not share the common reference sensor. Therefore, the QCLS (quadratic correction least squares) methods cannot be applied, in which all pairs of sensor should include the common reference sensor. For this reason, a Gauss-Newton algorithm is adopted to solve the non-linear least square problem. In addition, to show the performance of the proposed method, we compare the RMSE (root mean square error) of the estimates with CRLB (Cramer-Rao lower bound) and derived the CEP (circular error probable) planes to analyze the expected estimation performance on the 2-dimensional space.

An Alternative Approach for Environmental Education to overcome free rider egoism based on the Perspectives of Prisoner's Dilemma Situation (죄수딜렘마(PD) 게임상황을 활용한 환경교육의 가능성)

  • 김태경
    • Hwankyungkyoyuk
    • /
    • v.13 no.2
    • /
    • pp.38-50
    • /
    • 2000
  • We are evidently Home Economicus, egoistic rational utility maximiger, and all the capitalism economic situation make us adapt to such life, and recognize that it is rational to act like that. This can be demonstrated in Prisoner′s Dilemma(PD) which always select the non-cooperative choice for free rider in rational selection process of public goods. This paper notice the "what is problem\ulcorner"The problem is not in free rider itself but in free rider egoism. The practical behavior of free rider egoism can be explained by way of Prisoner′s Dilemma. In PD situation, the prisoner makes a rational choice, non-cooperative alternative, but he doesn′arrive at preto-optimality. It is dilemma. Why can′t he arrive \ulcorner Because he is isolated from other prisoner. So we call it prisoner′s dilemma. The PD situation can be compared with our real economic life, which, we think, have kept by rational choice of the public goods. We actually have made our life as an individual one although we organized communities of capitalism. Of course, we know each others as members of same society, but each individual being can′t secure the belief, which has composed basis of community. So, it is very similar and common between PD situation and our real economic life in the production of public goods. We conclude that this non-cooperative process of PD situation can be utilized as instrument of EE. So this non-cooperative process can show us the effectiveness of EE as follows. \circled1 Game situation life PD can be used as good instrument for explaining the rational selection dilemma(error) to Homo-Economicus, the rational agent, with the optimal and rational language. \circled2 We can show that the selection result is dilemma, not arrive pareto - optimality. \circled3 The dilemma can be resolved with accomplishing the good communal life based on the belief, not on the isolation.

  • PDF

Improvement of Rating Curve Fitting Considering Variance Function with Pseudo-likelihood Estimation (의사우도추정법에 의한 분산함수를 고려한 수위-유량 관계 곡선 산정법 개선)

  • Lee, Woo-Seok;Kim, Sang-Ug;Chung, Eun-Sung;Lee, Kil-Seong
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.8
    • /
    • pp.807-823
    • /
    • 2008
  • This paper presents a technique for estimating discharge rating curve parameters. In typical practical applications, the original non-linear rating curve is transformed into a simple linear regression model by log-transforming the measurement without examining the effect of log transformation. The model of pseudo-likelihood estimation is developed in this study to deal with heteroscedasticity of residuals in the original non-linear model. The parameters of rating curves and variance functions of errors are simultaneously estimated by the pseudo-likelihood estimation(P-LE) method. Simulated annealing, a global optimization technique, is adapted to minimize the log likelihood of the weighted residuals. The P-LE model was then applied to a hypothetical site where stage-discharge data were generated by incorporating various errors. Results of the P-LE model show reduced error values and narrower confidence intervals than those of the common log-transform linear least squares(LT-LR) model. Also, the limit of water levels for segmentation of discharge rating curve is estimated in the process of P-LE using the Heaviside function. Finally, model performance of the conventional log-transformed linear regression and the developed model, P-LE are computed and compared. After statistical simulation, the developed method is then applied to the real data sets from 5 gauge stations in the Geum River basin. It can be suggested that this developed strategy is applied to real sites to successfully determine weights taking into account error distributions from the observed discharge data.

Feature Extraction Algorithm for Underwater Transient Signal Using Cepstral Coefficients Based on Wavelet Packet (웨이브렛 패킷 기반 캡스트럼 계수를 이용한 수중 천이신호 특징 추출 알고리즘)

  • Kim, Juho;Paeng, Dong-Guk;Lee, Chong Hyun;Lee, Seung Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.6
    • /
    • pp.552-559
    • /
    • 2014
  • In general, the number of underwater transient signals is very limited for research on automatic recognition. Data-dependent feature extraction is one of the most effective methods in this case. Therefore, we suggest WPCC (Wavelet packet ceptsral coefficient) as a feature extraction method. A wavelet packet best tree for each data set is formed using an entropy-based cost function. Then, every terminal node of the best trees is counted to build a common wavelet best tree. It corresponds to flexible and non-uniform filter bank reflecting characteristics for the data set. A GMM (Gaussian mixture model) is used to classify five classes of underwater transient data sets. The error rate of the WPCC is compared using MFCC (Mel-frequency ceptsral coefficients). The error rates of WPCC-db20, db40, and MFCC are 0.4%, 0%, and 0.4%, respectively, when the training data consist of six out of the nine pieces of data in each class. However, WPCC-db20 and db40 show rates of 2.98% and 1.20%, respectively, while MFCC shows a rate of 7.14% when the training data consists of only three pieces. This shows that WPCC is less sensitive to the number of training data pieces than MFCC. Thus, it could be a more appropriate method for underwater transient recognition. These results may be helpful to develop an automatic recognition system for an underwater transient signal.

Three Dimension Car Body Measuring System Using Industrial Robots (산업용 로봇을 이용한 3차원 차체측정 시스템)

  • Kim, Mun-Sang;Cho, Kyung-Rae;Park, Kang;Shin, Hyun-Oh
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.8
    • /
    • pp.2555-2560
    • /
    • 1996
  • Inspecting the dimensional accuracy of a car-body in assembly line is a very important process to assure high productivity. Now there exist two common inspecting methods in practice. One is to measure a sampled car-body with three dimensional measuring machine, and the other is to measure car-body with three dimensional measuring machine, and the other is to measure car-body in assembly line using many sensors fixed to a large jig frame. The formal method takes too long to inspect a sampled car-body of a same sort, and cannot therefore give an useful error trend for the whole production. On the other hand, the latter lacks flexibility and is very cost-intensive. By using industrial robots and sensors, an in-line Car-Body Measuring(CBM) system which ensured high flexiblity and sufficient accuracy was developed. This CBM cell operates in real production line and measures the check points by the non-contact type using camera and laser displacement sensor(LDS). This system can handle about 15 Measuring points within a cycle time of 40 seconds. A process computer controls whole process such as data acquisition file handling and data analysis. Robot arms changes in length due to ambient temperature fluctuation affecting the measuring accuracy. To compensate this error, a robot arm calibration process was developed.

VALIDATION OF ON-LINE MONITORING TECHNIQUES TO NUCLEAR PLANT DATA

  • Garvey, Jamie;Garvey, Dustin;Seibert, Rebecca;Hines, J. Wesley
    • Nuclear Engineering and Technology
    • /
    • v.39 no.2
    • /
    • pp.133-142
    • /
    • 2007
  • The Electric Power Research Institute (EPRI) demonstrated a method for monitoring the performance of instrument channels in Topical Report (TR) 104965, 'On-Line Monitoring of Instrument Channel Performance.' This paper presents the results of several models originally developed by EPRI to monitor three nuclear plant sensor sets: Pressurizer Level, Reactor Protection System (RPS) Loop A, and Reactor Coolant System (RCS) Loop A Steam Generator (SG) Level. The sensor sets investigated include one redundant sensor model and two non-redundant sensor models. Each model employs an Auto-Associative Kernel Regression (AAKR) model architecture to predict correct sensor behavior. Performance of each of the developed models is evaluated using four metrics: accuracy, auto-sensitivity, cross-sensitivity, and newly developed Error Uncertainty Limit Monitoring (EULM) detectability. The uncertainty estimate for each model is also calculated through two methods: analytic formulas and Monte Carlo estimation. The uncertainty estimates are verified by calculating confidence interval coverages to assure that 95% of the measured data fall within the confidence intervals. The model performance evaluation identified the Pressurizer Level model as acceptable for on-line monitoring (OLM) implementation. The other two models, RPS Loop A and RCS Loop A SG Level, highlight two common problems that occur in model development and evaluation, namely faulty data and poor signal selection

Locally Initiating Line-Based Object Association in Large Scale Multiple Cameras Environment

  • Cho, Shung-Han;Nam, Yun-Young;Hong, Sang-Jin;Cho, We-Duke
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.3
    • /
    • pp.358-379
    • /
    • 2010
  • Multiple object association is an important capability in visual surveillance system with multiple cameras. In this paper, we introduce locally initiating line-based object association with the parallel projection camera model, which can be applicable to the situation without the common (ground) plane. The parallel projection camera model supports the camera movement (i.e. panning, tilting and zooming) by using the simple table based compensation for non-ideal camera parameters. We propose the threshold distance based homographic line generation algorithm. This takes account of uncertain parameters such as transformation error, height uncertainty of objects and synchronization issue between cameras. Thus, the proposed algorithm associates multiple objects on demand in the surveillance system where the camera movement dynamically changes. We verify the proposed method with actual image frames. Finally, we discuss the strategy to improve the association performance by using the temporal and spatial redundancy.

A Missing Data Imputation by Combining K Nearest Neighbor with Maximum Likelihood Estimation for Numerical Software Project Data (K-NN과 최대 우도 추정법을 결합한 소프트웨어 프로젝트 수치 데이터용 결측값 대치법)

  • Lee, Dong-Ho;Yoon, Kyung-A;Bae, Doo-Hwan
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.4
    • /
    • pp.273-282
    • /
    • 2009
  • Missing data is one of the common problems in building analysis or prediction models using software project data. Missing imputation methods are known to be more effective missing data handling method than deleting methods in small software project data. While K nearest neighbor imputation is a proper missing imputation method in the software project data, it cannot use non-missing information of incomplete project instances. In this paper, we propose an approach to missing data imputation for numerical software project data by combining K nearest neighbor and maximum likelihood estimation; we also extend the average absolute error measure by normalization for accurate evaluation. Our approach overcomes the limitation of K nearest neighbor imputation and outperforms on our real data sets.