• Title/Summary/Keyword: Non-affine

Search Result 54, Processing Time 0.019 seconds

CURVATURE OF MULTIPLY WARPED PRODUCTS WITH AN AFFINE CONNECTION

  • Wang, Yong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.5
    • /
    • pp.1567-1586
    • /
    • 2013
  • In this paper, we study the Einstein multiply warped products with a semi-symmetric non-metric connection and the multiply warped products with a semi-symmetric non-metric connection with constant scalar curvature, we apply our results to generalized Robertson-Walker spacetimes with a semi-symmetric non-metric connection and generalized Kasner spacetimes with a semi-symmetric non-metric connection and find some new examples of Einstein affine manifolds and affine manifolds with constant scalar curvature. We also consider the multiply warped products with an affine connection with a zero torsion.

Time-Discretization of Time Delayed Non-Affine System via Taylor-Lie Series Using Scaling and Squaring Technique

  • Zhang Yuanliang;Chong Kil-To
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.3
    • /
    • pp.293-301
    • /
    • 2006
  • A new discretization method for calculating a sampled-data representation of a nonlinear continuous-time system is proposed. The proposed method is based on the well-known Taylor series expansion and zero-order hold (ZOH) assumption. The mathematical structure of the new discretization method is analyzed. On the basis of this structure, a sampled-data representation of a nonlinear system with a time-delayed input is derived. This method is applied to obtain a sampled-data representation of a non-affine nonlinear system, with a constant input time delay. In particular, the effect of the time discretization method on key properties of nonlinear control systems, such as equilibrium properties and asymptotic stability, is examined. 'Hybrid' discretization schemes that result from a combination of the 'scaling and squaring' technique with the Taylor method are also proposed, especially under conditions of very low sampling rates. Practical issues associated with the selection of the method parameters to meet CPU time and accuracy requirements are examined as well. The performance of the proposed method is evaluated using a nonlinear system with a time-delayed non-affine input.

ENLARGING THE BALL OF CONVERGENCE OF SECANT-LIKE METHODS FOR NON-DIFFERENTIABLE OPERATORS

  • Argyros, Ioannis K.;Ren, Hongmin
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.1
    • /
    • pp.17-28
    • /
    • 2018
  • In this paper, we enlarge the ball of convergence of a uniparametric family of secant-like methods for solving non-differentiable operators equations in Banach spaces via using ${\omega}$-condition and centered-like ${\omega}$-condition meantime as well as some fine techniques such as the affine invariant form. Numerical examples are also provided.

3-DIMENSIONAL NON-COMPACT INFRA-NILMANIFOLDS

  • Kim, Ki-Heung;Im, Sung-Mo
    • Journal of the Korean Mathematical Society
    • /
    • v.36 no.1
    • /
    • pp.1-13
    • /
    • 1999
  • Let G be the 3-dimensional Heisenberg group. A discrete subgroup of Isom(G), acting freely on G with non-compact quotient, must be isomorphic to either 1, Z, Z2 or the fundamental group of the Klein bottle. We classify all discrete representations of such groups into Isom(G) up to affine conjugacy. This yields an affine calssification of 3-dimensional non-compact infra-nilmanifolds.

  • PDF

Time-Discretization of Non-Affine Nonlinear System with Delayed Input Using Taylor-Series

  • Park, Ji-Hyang;Chong, Kil-To;Kazantzis, Nikolaos;Parlos, Alexander G.
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.8
    • /
    • pp.1297-1305
    • /
    • 2004
  • In this paper, we propose a new scheme for the discretization of nonlinear systems using Taylor series expansion and the zero-order hold assumption. This scheme is applied to the sampled-data representation of a non-affine nonlinear system with constant input time-delay. The mathematical expressions of the discretization scheme are presented and the ability of the algorithm is tested for some of the examples. The proposed scheme provides a finite-dimensional representation for nonlinear systems with time-delay enabling existing controller design techniques to be applied to them. For all the case studies, various sampling rates and time-delay values are considered.

Adaptive Neural Control for Output-Constrained Pure-Feedback Systems (출력 제약된 Pure-Feedback 시스템의 적응 신경망 제어)

  • Kim, Bong Su;Yoo, Sung Jin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.1
    • /
    • pp.42-47
    • /
    • 2014
  • This paper investigates an adaptive approximation design problem for the tracking control of output-constrained non-affine pure-feedback systems. To satisfy the desired performance without constraint violation, we employ a barrier Lyapunov function which grows to infinity whenever its argument approaches some limits. The main difficulty in dealing with pure-feedback systems considering output constraints is that the system has a non-affine appearance of the constrained variable to be used as a virtual control. To overcome this difficulty, the implicit function theorem and mean value theorem are exploited to assert the existence of the desired virtual and actual controls. The function approximation technique based on adaptive neural networks is used to estimate the desired control inputs. It is shown that all signals in the closed-loop system are uniformly ultimately bounded.

Neural-networks-based Disturbance Observer and Tracker Design in the Presence of Unknown Control Direction and Non-affine Nonlinearities (미지의 제어 방향성과 비어파인 비선형성을 고려한 신경망 기반 외란 관측기와 추종기 설계)

  • Kim, Hyoung Oh;Yoo, Sung Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.4
    • /
    • pp.666-671
    • /
    • 2017
  • A disturbance-observer-based adaptive neural tracker design problem is investigated for a class of perturbed uncertain non-affine nonlinear systems with unknown control direction. A nonlinear disturbance observer (NDO) design methodology using neural networks is presented to construct a tracking control scheme with the attenuation effect of an external disturbance. Compared with previous control results using NDO for nonlinear systems in non-affine form, the major contribution of this paper is to design a NDO-based adaptive tracker without the sign information of the control coefficient. The stability of the closed-loop system is analyzed in the sense of Lyapunov stability.

DIFFERENTIABILITY OF QUASI-HOMOGENEOUS CONVEX AFFINE DOMAINS

  • JO KYEONGHEE
    • Journal of the Korean Mathematical Society
    • /
    • v.42 no.3
    • /
    • pp.485-498
    • /
    • 2005
  • In this article we show that every quasi-homogeneous convex affine domain whose boundary is everywhere differentiable except possibly at a finite number of points is either homogeneous or covers a compact affine manifold. Actually we show that such a domain must be a non-elliptic strictly convex cone if it is not homogeneous.

Piecewise Affine Control Design for Power Factor Correction Rectifiers

  • Tahami, Farzad;Poshtkouhi, Shahab;Ahmadian, Hamed Molla
    • Journal of Power Electronics
    • /
    • v.11 no.3
    • /
    • pp.327-334
    • /
    • 2011
  • Single-phase power factor correction (PFC) converter circuits are non-linear systems due to the contribution of their multiplier. This non-linearity causes difficulties in analysis and design. Models that reduce the system to a linear system involve considerable approximation, and produce results that are susceptible to instability problems. In this paper a piecewise affine (PWA) system is introduced for describing the nonlinear averaged model. Then robust output feedback controllers are established in terms of the linear matrix inequality (LMI). Simulation and experiments results show the effectiveness of the proposed control method.