• Title/Summary/Keyword: Non-Radiation

Search Result 1,529, Processing Time 0.031 seconds

Radiation Phenomena in Planetary Entries

  • Park, Chul
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.2
    • /
    • pp.105-111
    • /
    • 2013
  • Radiative heating phenomena occurring in planetary entry flights are reviewed for the purpose of educating those who are not familiar with the problem. How the radiative heat transfer rates to the Apollo entry vehicle were measured and analyzed are first described. Next, the effects of thermo-chemical non-equilibrium on radiation are summarized. Then the radiation problems in entry flights into other planets are reviewed. Finally, unsolved problems are enumerated.

Formation of star clusters by cloud-cloud collision

  • Han, Daniel;Kimm, Taysun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.68.3-68.3
    • /
    • 2019
  • We present the preliminary results on the formation of star clusters by cloud-cloud collision. For this purpose, we perform sub-parsec scale, radiation-hydrodynamic simulations of giant molecular clouds using a sink particle algorithm. The simulations include photo-ionization, direct radiation pressure, and non-thermal radiation pressure from infrared and Lyman alpha photons. We confirm that radiation feedback from massive stars suppresses accretion onto sink particles. We examine the collision-induced star formation and discuss the possibility on the formation of a globular cluster.

  • PDF

Prediction of Radiative Heat Transfer in a Three-Dimensional Gas Turbine Combustor with the Finite-Volume Method (유한체적법에 의한 복잡한 형상을 갖는 3차원 가스터빈 연속기내의 복사열 전달 해석)

  • Kim, Man-Yeong;Baek, Seung-Uk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.8
    • /
    • pp.2681-2692
    • /
    • 1996
  • The finite-volume method for radiation in a three-dimensional non-orthogonal gas turbine combustion chamber with absorbing, emitting and anisotropically scattering medium is presented. The governing radiative transfer equation and its discretization equation using the step scheme are examined, while geometric relations which transform the Cartesian coordinate to a general body-fitted coordinate are provided to close the finite-volume formulation. The scattering phase function is modeled by a Legendre polynomial series. After a benchmark solution for three-dimensional rectangular combustor is obtained to validate the present formulation, a problem in three-dimensional non-orthogonal gas turbine combustor is investigated by changing such parameters as scattering albedo, scattering phase function and optical thickness. Heat flux in case of isotropic scattering is the same as that of non-scattering with specified heat generation in the medium. Forward scattering is found to produce higher radiative heat flux at hot and cold wall than backward scattering and optical thickness is also shown to play an important role in the problem. Results show that finite-volume method for radiation works well in orthogonal and non-orthogonal systems.

Level of radiation dose in university hospital non-insured private health screening programs in Korea

  • Lee, Yun-Keun
    • Environmental Analysis Health and Toxicology
    • /
    • v.31
    • /
    • pp.7.1-7.6
    • /
    • 2016
  • Objectives The aim of this study is to evaluate radiation exposure resulting from the comprehensive health examinations of selected university hospital programs and to present basic data for research and management strategies on the health effects of medical radiation exposure. Methods Radiation-based diagnostic studies of the comprehensive health examination programs of ten university hospitals in Seoul, Korea, as introduced in their websites, were analyzed. The medical radiation studies of the programs were reviewed by radiologists. Only the effective doses of the basic studies were included in the analysis. The optional studies of the programs were excluded. Results Among the 190 comprehensive health examination programs, 132 programs (69.5%) included computed tomography studies, with an average of 1.4 scans. The average effective dose of radiation by program was 3.62 mSv for an intensive program for specific diseases; 11.12 mSv for an intensive program for cancer; 18.14 mSv for a premium program; and 24.08 mSv for an overnight program. A higher cost of a programs was linked to a higher effective dose (r=0.812). The effective doses of the examination programs for the same purposes differed by as much as 2.1 times by hospital. Inclusion of positron emission tomography-computed tomography was the most critical factor in determining the level of effective dose. Conclusions It was found that radiation exposure dose from comprehensive health exam programs targeted for an asymptomatic, healthy public reached between 3.6 and 24 times the annual dose limit for the general public. Relevant management policies at the national level should be provided to minimize medical radiation exposure.

Thermal radiation and some physical combined effects on an asymmetric peristaltically vertical channel of nanofluid flow

  • Amira S. Awaad;Zakaria M. Gharsseldien
    • Advances in nano research
    • /
    • v.16 no.6
    • /
    • pp.579-591
    • /
    • 2024
  • This study explained the effects of radiation, magnetic field, and nanoparticle shape on the peristaltic flow of an Upper-Convected Maxwell nanofluid through a porous medium in an asymmetric channel for a better understanding of cooling and heating mechanisms in the presence of magnetic fields. These phenomena are modeled mathematically as a system of non-linear differential equations, that are solved under long-wavelength approximation and low Reynolds number conditions using the perturbation method. The results for nanofluid and temperature described the behavior of the pumping characteristics during their interaction with (the vertical position, thermal radiation, the shape of the nanoparticle, and the magnetic field) analytically and explained graphically. Also, the combined effects of thermal radiation parameters and some physical parameters on pressure rise, pressure gradient, velocity, and heat distribution are pointed out. Qualitatively, a reverse velocity appears with combined high radiation and Grashof number or combined high radiation and low volume flow rate. At high radiation, the spherical nanoparticle shape has the greatest effect on heat distribution.

Biological Effects of Different Chronic Medium-Dose-Rate Gamma Radiation Period Exposed on Mice (장기 중선량률의 감마선 피폭 기간에 따른 실험동물의 생물학적 영향 연구)

  • Kim, Jae-Kyung;Jin, Yeung Bae;Oh, Su-Mi;Lee, Yun-Jong;Sung, Nak-Yun;Song, Beom-Seok;Park, Jong-Heum;Byun, Eui-Baek;Lee, Ju-Woon;Kim, Jae-Hun
    • Journal of Radiation Industry
    • /
    • v.7 no.2_3
    • /
    • pp.135-139
    • /
    • 2013
  • Recently, chronic gamma radiation exposure on biological effects in middle dose-rates have become a serious concern. We investigated the biological effects of middle dose chronic exposure to gamma ray. Fifty male 6-week-old specific free Balb/c mice were randomly divided into five groups (four groups irradiated and one non-irradiated control group). Gamma radiation exposed in Gamma phytotron on Advanced Radiation Technology Institute (Jeongeup, Korea). Irradiation was carried out for 1 or 2 weeks using gamma rays at dose rates of 45 and $50mGy\;h^{-1}$ with total doses 7.56 Gy ($45mGy\;h^{-1}$, 1 week), 8.4 Gy ($50mGy\;h^{-1}$, 1 week), 15.12 Gy ($45mGy\;h^{-1}$, 2 weeks) and 16.8 Gy ($50mGy\;h^{-1}$, 2 weeks). After irradiation, immediately we sacrificed and counted body and organ weights. Moreover we counted spleen cell numbers. Compared with control non-irradiated group, all irradiated groups of body and spleen weights showed significant decreased. However, no significant alteration was observed between same irradiated period groups. In spleen cell numbers, reduced compared to the control group. However, significant alteration was observed between same irradiated period groups ($45mGy\;h^{-1}$, $50mGy\;h^{-1}$). These results demonstrated biological effects according to the radiation dose rate and irradiated period.

Effects of Radiation Safety Management Education with the Use of a Booklet for Intensive Care Unit Nurses (중환자실 간호사를 대상으로 소책자를 활용한 방사선 안전관리 교육의 효과)

  • Lee, Jeong Eun;Kim, Sang Hee
    • Journal of Korean Critical Care Nursing
    • /
    • v.10 no.2
    • /
    • pp.1-13
    • /
    • 2017
  • Purpose: This study investigated the effects that the use of a booklet for intensive care unit nurses had on radiation safety management education (knowledge about and behaviors in radiation safety management, and awareness of anxiety caused by radiation hazards). Methods: A randomized control group pretest-posttest design was used. A booklet about radiation safety management developed by the authors was used as educational material. Participants (N=42) were intensive care unit nurses of P hospital in B city. Training was provided to the experimental group (N=21). Knowledge about and behaviors in radiation safety management and awareness of anxiety caused by radiation hazards were measured by questionnaires before and after the intervention. Data was analyzed by an $X^2$-test, non-paired t-test, and paired t-test. Results: There was a significant difference between groups in knowledge of (t=-14.932, p<.001) and behaviors in (t=-8.297, p<.001) radiation safety management and awareness of anxiety caused by radiation hazards (t=9.378, p<.001). Conclusion: The levels of knowledge about and behaviors in radiation safety management and awareness of anxiety generated by radiation hazards of intensive care unit nurses increased after receiving one session of radiation safety management education using the booklet. Therefore, providing radiation safety management training is suggested as an effective strategy for improving radiation safety management.

  • PDF

A Study about The Effect of Radiation on Particle-Seeding Hydrogen Flame (고체입자의 수소화염에 있어서의 열복사에 관한 연구)

  • Choi, Joon-Won;Baek, Seung-Wook;Kim, Jung-Ju;Kim, Han-Seok
    • 한국연소학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.129-139
    • /
    • 2002
  • From the view of the environmental protection against the use of fossil fuels, a great of efforts have been exerted to find an alternative energy source. Hydrogen may become an alternative. However the product species of the hydrogen flame is only $H_2O$, which emits only non-luminous radiation so the radiation from it is much smaller than that for a hydrocarbon flame. In this study, the authors designed and fabricated a laboratory scale test furnace to study thermal characteristics of hydrogen-air diffusion flame. In addition, the effects of addition of reacting as well as non-reacting solid particles were experimentally investigated. Among the total heat flux to the wall, about 75% was occupied by radiation while 25 % by convection. When the aluminum oxide ($Al_2O_3$) particles were added, the radiative heat flux was reduced due to heat blockage effects. On the other hand, the total as well as the radiative heat flux was increased when the carbon particles were seeded, since the overall temperature increased. The effects of swirl and excess air ratio were also examined.

  • PDF

Study on gamma radiation attenuation and non-ionizing shielding effectiveness of niobium-reinforced novel polymer composite

  • Akman, Ferdi.;Ogul, H.;Ozkan, I.;Kacal, M.R.;Agar, O.;Polat, H.;Dilsiz, K.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.283-292
    • /
    • 2022
  • Advanced radiation applications have been widely used and extended to many fields. As a result of this fact, choosing an appropriate shielding material based on the radiation application has become vital. In this regard, the integration of elements into polymer composites has been investigated and contributed to the quantity and quality of radiation shielding materials. This study reports photon attenuation parameters and electromagnetic shielding effectiveness of a novel polymer composite prepared with a matrix reinforced with three different proportions (5, 10, and 15 wt%) of niobium content. Addition of Nb dopant improves both photon attenuation and electromagnetic shielding effectiveness for the investigated composites. Therefore, Nb(15%) polymer composite with highest concentration has been found to be the best absorber for ionizing and non-ionizing radiations. Consequently, the performed analyzes provide evidences that the prepared Nb-reinforced polymer composite could be effectively used as photon radiation attenuator and electromagnetic shielding material.