지능형 차량의 안전 주행을 위해서 주변 차량의 상태를 파악하고, 충돌 위험도를 판단하는 일은 매우 중요하다. 특히 중앙선을 침범하여 주행하는 차량과의 충돌은 치명적일 수 있다. 맞은편에서 다가오는 차량의 중앙선 침범을 지능형 차량의 주요 센서 가운데 하나인 레이더 센서만을 이용하여 예측하면 센서의 특성상 발생하는 노이즈로 인해 오인식의 가능성이 높다. 오인식은 중앙선 침범보다 더 위험한 결과를 초래하기도 한다. 본 논문에서는 레이더 신호에 IMM을 사용한 추적 알고리즘과 퍼지 논리를 적용하여 중앙선 침범 예측의 정확도를 높이고 오인식을 감소시킬 수 있는 알고리즘을 제안한다. 퍼지 로직은 레이더 신호와 IMM알고리즘의 결합을 적절히 조절하는 기능을 한다. 제안된 알고리즘은 컴퓨터 모의 실험을 통해 오인식의 감소가 효과적으로 이루어짐이 검증되었다.
모바일 그리드 네트워크의 단점인 연결의 불안정성과 이기종의 비전용 이동장비의 사용을 고려한 환경에서, 모바일 그리드 시스템의 효율적인 성능을 제공하기 위해서 본 논문에서는 작업할당 스케줄링 알고리즘을 제시하였다. 제시한 스케줄링 알고리즘은 두 개의 중요기능이 있으며, 이는 작업처리 시간을 예측하는 것과 작업을 수행시키기 위해 필요한 최적의 이동단말기의 개수를 정하는 것이다. 이러한 성능을 제공하기 위해서 제시한 알고리즘에서는 무선 네트워크 환경에서 이기종의 비전용장비의 영향을 고려한 네트워크의 지연시간을 계산하는 수학적인 수식을 제시하였다. 또한 구현된 모바일 그리드 환경에서 분산 어플리케이션을 수행하여 제시한 스케줄링 알고리즘에 대해 성능평가를 수행하였다.
대규모 시스템 제어와 관련하여 몇 개의 부시스템으로 분할하여 처리하는 계층별 제어이론이 많이 연구되어 왔으며 특히 치수가 높은 대규모 비선형 시스템의 경우에 고차의 비선형 미분방정식을 동시에 적분을 해야하고 많은 계산량을 필요로 하므로 해를 구하기가 어려운 문제가 있다. 1980년대 Singh과 Hassan은 상호예측 알고리즘(two level prediction algorithm)을 제시한바 있고 이 방법은 비선형 대규모 시스템의 최적제어에 효과적이나 시스템 행렬 Q, R, S, H에 따라 제한된 최적화 구간에서만 성립되는 등 최적화 구간의 길이와 수렴성 여부가 행렬 값에 영향을 받는 알고리즘상의 단점이 있다. 본 연구에서는 수렴조건으로부터 평가함수에 구속조건(quadratic penalty term)을 부여하지 않는 새로운 개선된 알고리즘을 제시 적용하여 시스템 행렬 결정을 위한 과정 없이 수렴속도의 향상과 함께 최적의 수렴성 및 최적화 구간을 얻도록 했다. 분할된 비선형 시스템의 최적제어를 위해서는, 대수 반복연산만으로 2점 경계치 문제(two point boundary value problem)를 해결함으로써 기존의 수치 해석법에 비해 연산이 간단한 블록펄스 변환 방법을 사용해서 처리했다.
This paper adopts a new approach in which nonlinear vibrations can be controlled using fuzzy controllers by optimal grey evolutionary algorithm. If the fuzzy controller cannot stabilize the systems, then the high frequency is injected into the system to assist the controller, and the system is asymptotically stabilized by adjusting the parameters. This paper uses the GM (grey model) and the neural network prediction model. The structure of the neural network is improved from a single factor, and multiple data inputs are extended to various factors and numerous data inputs. The improved model expands the applicable range of uncontrolled elements and improves the accuracy of controlled prediction, using the model that has been trained and stabilized by multiple learning. The simulation results show that the improved gray neural network model has higher prediction accuracy and reliability than the traditional GM model, improving controlled management and pre-control ability. In the combined prediction, the time series parameters and the predicted values obtained from the GM (1,1) (Grey Model of first order and one variable) are simultaneously used as the input terms of the neural network, considering the influence of the non-equal spacing of the data, which makes the results of the combined gray neural network model more rationalized. By adjusting the model structure and system parameters to simulate and analyze the controlled elements, the corresponding risk change trend graphs and prediction numerical calculation results are obtained, which also realize the effective prediction of controlled elements. According to the controlled warning principle and objective, the fuzzy evaluation method establishes the corresponding early warning response method. The goals of this paper are towards access to adequate, safe and affordable housing and basic services, promotion of inclusive and sustainable urbanization and participation, implementation of sustainable and disaster-resilient buildings, sustainable human settlement planning and manage.
We propose two new rate control schemes to improve MPEG-2 rate control in view of visual quality when scene changes happen. Two proposed schemes are characterized by real-time and non real-time improvement to reduce the impact of scene changes. We also propose a new target-bit prediction method using spatial activity of pictures and present a simple and efficient scene change detection scheme using signed difference of mean absolute difference (MAD). Computer simulation results show that the proposed real-time algorithm effectively alleviates visual quality degradation after scene changes. The proposed non real-time algorithm gives maximum 2 dB improvement in peak signal-to-noise ratio (PSNR) at a scene-changed picture, compared with MPEG-2 rate control scheme and it shows better quality than the real-time one.
MOV(Metal Oxide Varistor) is the most important part of SPD(Surge Protective Device) which can protect electric facilities from an impulse current such as a lightning. So far, the fault of MOVs have decided only by surge count without considering magnitude of surge current and an amount of input energy. This paper proposed the fault prediction algorithm for the MOV using look up table made by surge count and input current data which have non-linear characteristics for input current and are estimated by high voltage experimental results. Proposed algorithm was proved by experiment on verification at a high voltage laboratory.
In the present study, an enhanced subsurface prediction algorithm based on a non-parametric geostatistical model and a history matching technique through Gibbs sampler is developed and the iterative prediction improvement procedure is proposed. The developed model is applied to a simple two-dimensional synthetic case where domain is composed of three different hydrogeologic media with $500m{\times}40m$ scale. In the application, it is assumed that there are 4 independent pumping tests performed at different vertical interval and the history curves are acquired through numerical modeling. With two hypothetical borehole information and pumping test data, the proposed prediction model is applied iteratively and continuous improvements of the predictions with reduced uncertainties of the media distribution are observed. From the results and the qualitative/quantitative analysis, it is concluded that the proposed model is good for the subsurface prediction improvements where the history data is available as a supportive information. Once the proposed model be a matured technique, it is believed that the model can be applied to many groundwater, geothermal, gas and oil problems with conventional fluid flow simulators. However, the overall development is still in its preliminary step and further considerations needs to be incorporated to be a viable and practical prediction technique including multi-dimensional verifications, global optimization, etc. which have not been resolved in the present study.
이 연구의 목적은 비대칭 분포를 가지는 현장 조사 자료로부터 GIS 기반 주제도를 생성하기 위한 공간 내삽 방법으로 단변량 크리깅 기법을 비교하는데 있다. 기존 정규 크리깅과 비선형 자료 변환에 기반을 둔 로그 정규 크리깅, 다중 가우시안 크리깅과 지시자 크리깅을 지화학 원소 비소와 납에 대해 사례 연구를 통해 비교하였다. 예측 능력의 비교 분석을 위해 leave-one-out 기반 교차 검증을 통한 오차 분석을 수행하였으며, 샘플링 밀도의 차이에 따른 오차의 변화 양상도 분석하였다. 비교 분석 결과, 지시자 크리깅이 전반적으로 가장 높은 예측 능력을 나타내었으며, 작은 값과 높은 값의 예측 능력도 우수한 것으로 나타났다. 정규 크리깅에 비해 비선형 자료 변환 기반 크리깅 기법들이 우수한 예측 능력을 나타내었지만, 기존에 많이 적용된 로그 정규 크리깅은 샘플링 밀도와 상관없이 편향 정도가 가장 크게 나타내었다. 이 연구를 통해 얻어지는 정량적 검증 결과는 비대칭 분포를 가지는 현장 조사 자료의 내삽을 위한 크기깅 기법의 선정에 유용하게 이용될 수 있을 것으로 기대된다.
In general, non-stationary or chaos time series forecasting is very difficult since there exists a drift and/or nonlinearities in them. To overcome this situation, we suggest a new prediction method based on multiple model TS fuzzy predictors combined with preprocessing of time series data, where, instead of time series data, the differences of them are applied to predictors as input. In preprocessing procedure, the candidates of optimal difference interval are determined by using con-elation analysis and corresponding difference data are generated. And then, for each of them, TS fuzzy predictor is constructed by using k-means clustering algorithm and least squares method. Finally, the best predictor which minimizes the performance index is selected and it works on hereafter for prediction. Computer simulation is performed to show the effectiveness and usefulness of our method.
Prediction algorithm of the energy storage system in accordance with the load pattern can cause economic loss in case of a failure prediction. In this paper, we compare the electricity charge between industrial power system with ESS - this case's operation is based on Non-prediction operation method. - and without ESS. In addition, we derive the payback period.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.