• Title/Summary/Keyword: Non-Locking

Search Result 64, Processing Time 0.021 seconds

Surgical Treatment of Olecranon Fractures

  • Koh, Kyoung-Hwan;Oh, Hyoung-Keun
    • Clinics in Shoulder and Elbow
    • /
    • v.20 no.1
    • /
    • pp.49-56
    • /
    • 2017
  • Since the olecranon fractures are caused by relatively low-energy injuries, such as a fall from standing height, they are usually found without comminution. Less commonly they can be developed by high-energy injuries and have severe concomitant comminution or injuries to surrounding structures of the elbow. Because the fracture by nature is intra-articular with the exception of some avulsion-type fracture, a majority of olecranon fractures are usually indicated for surgical treatment. Even if there is minimal displacement, surgical treatment is recommended because there is a possibility of further displacement by the traction force of triceps tendon. The most common type of olecranon fracture is displaced, simple non-comminuted fracture (that is, Mayo type IIA fractures). Although tension band wiring was the most widespread treatment method for these fractures previously, there is some trends toward fixation using locking plates. Primary goal of the surgery is to restore a congruent joint and extensor mechanisms by accurate reduction and stable fixation so that range of motion exercises can be performed. The literature has shown that good clinical outcomes are achieved irrespective of surgical fixation technique. However, since the soft tissue envelope around the elbow is poor and the implants are located at the subcutaneous layer, implant irritation is still the most common complication associated with surgical treatment.

Stability and Post-buckling Analysis of Stiffened Plate and Shell Structures (보강된 판 및 쉘구조의 좌굴 및 후좌굴해석)

  • 김문영;최명수;민병철
    • Computational Structural Engineering
    • /
    • v.11 no.4
    • /
    • pp.155-168
    • /
    • 1998
  • 보강된 판 및 쉘구조의 안정성 및 후좌굴을 포함하는 기하학적 비선형 해석을 수행하기 위하여, total Lagrangian formulation에 근거한 연속체의 증분평형방정식으로부터 변형된 쉘요소인 유한요소이론을 제시하였다. 쉘구조의 곡률이 불연속적으로 변하거나 쉘부재들이 유한한 각도로 만나는 보강된 판 및 쉘구조의 비선형 해석이 가능하도록 주부재와 보강재 간의 연결점에 대한 일반적인 변환관계를 제시하였으며 좌굴해석 및 기하학적 비선형해석의 경우에 해의 정확성 및 수렴성을 개선시키기 위하여 접선강도행렬 산정시 회전각의 2차항을 포함시켰다. 또한, shear locking 현상을 극복하기 위하여 감차적분을 적용하였고 쉘구조의 좌굴해석에서는 power method를 적용하여 해석의 효율을 높였으며, 후좌굴해석에서는 변위 및 하중증분법을 적절히 결합시켜 보강된 쉘구조의 후좌굴 거동추적이 용이하였다. 또한, 입력자료를 손쉽게 준비하고 좌굴모드 및 후좌굴거동을 효율적으로 분석하기 위하여 전, 후 처리 프로그램을 개발하였고 다양한 해석예제를 통하여 다른 문헌의 해석결과를 비교함으로써 본 연구에서 개발된 유한요소 해석프로그램의 타당성 및 정확성을 입증하였다.

  • PDF

Higher-order assumed stress quadrilateral element for the Mindlin plate bending problem

  • Li, Tan;Qi, Zhaohui;Ma, Xu;Chen, Wanji
    • Structural Engineering and Mechanics
    • /
    • v.54 no.3
    • /
    • pp.393-417
    • /
    • 2015
  • In this paper an 8-node quadrilateral assumed stress hybrid Mindlin plate element with $39{\beta}$ is presented. The formulation is based on complementary energy principle. The proposed element is free of shear locking and is capable of passing all the patch tests, especially the non-zero constant shear enhanced patch test. To accomplish this purpose, special attention is devoted to selecting boundary displacement interpolation and stress approximation in domain. The arbitrary order Timoshenko beam function is successfully used to derive the boundary displacement interpolation. According to the equilibrium equations, an appropriate stress approximation is rationally derived. Particularly, in order to improve element's accuracy, the assumed stress field is derived by employing $39{\beta}$ rather than conventional $21{\beta}$. The resulting element can be adopted to analyze both moderately thick and thin plates, and the convergence for the very thin case can be ensured theoretically. Excellent element performance is demonstrated by a wide of experimental evaluations.

Linked List Based Concurrency Control Technique of B+-tree for Non-Locking Retrieval Operation (B+-Tree에서의 잠금 없는 검색 연산을 위한 연결 리스트 기반의 동시성 제어 기법)

  • Eo, Sang-Hun;Kim, Myoung-Keun;Bae, Hae-Young
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2004.05a
    • /
    • pp.23-26
    • /
    • 2004
  • 최근 인터넷 및 이동 통신기기의 사용이 급증하면서 각종 데이터에 대한 사용자들의 검색 요청은 빠른 응답 시간을 요구하는 경우가 늘어나게 되었다. 이를 충족시키기 위하여 주기억 상주 데이터베이스 관리 시스템들이 등장하게 되었고 또한 대량의 데이터들에 대한 색인 구조와 색인에 대한 접근 충돌을 제어하면서도 빠른 응답 시간을 보장하는 색인 동시성 제어 기법들에 관한 연구가 활발히 진행되어 왔다. 현재 대부분의 주기억 상주 데이터베이스 관리 시스템들은 색인에 대한 동시성 제어 기법으로 잠금 기반의 동시성 제어 기법들을 많이 사용하고 있다. 그러나 잠금 기반의 동시성 제어 기법들은 검색 연산을 포함한 모든 연산에 대하여 접근하려고 하는 노드에 잠금을 거는 것을 요구하기 때문에 잠금이 걸려있는 노드를 접근 하려는 연산은 잠금이 풀리기를 기다려야만 한다. 따라서 잠금 기반의 색인 동시성 제어 기법들은 동시성에 제약이 생겨 검색 요청에 대한 응답시간을 지연시킨다. 본 논문에서는 $B^+$-Tree에서의 잠금 없는 검색 연산을 위하여 엔트리간 연결 리스트 기반의 동시성 제어 기법을 제안한다. 본 논문에서 제안하는 기법은 주기억 상주 데이터베이스 관리 시스템 환경에서 검색 연산이 아무런 잠금없이 수행되는 것을 보장한다. 특히 본 논문에서 제안하는 기법은 삽입, 삭제 연산이 수행 중인 노드에서의 잠금없는 검색 연산의 수행이 가능하기 때문에 잠금 기반의 동시성 제어 기법들 보다 빠르고 예측 가능한 응답시간을 보장한다.

  • PDF

Column-aware Transaction Management Scheme for Column-Oriented Databases (컬럼-지향 데이터베이스를 위한 컬럼-인지 트랜잭션 관리 기법)

  • Byun, Si-Woo
    • Journal of Internet Computing and Services
    • /
    • v.15 no.4
    • /
    • pp.125-133
    • /
    • 2014
  • The column-oriented database storage is a very advanced model for large-volume data analysis systems because of its superior I/O performance. Traditional data storages exploit row-oriented storage where the attributes of a record are placed contiguously in hard disk for fast write operations. However, for search-mostly datawarehouse systems, column-oriented storage has become a more proper model because of its superior read performance. Recently, solid state drive using MLC flash memory is largely recognized as the preferred storage media for high-speed data analysis systems. The features of non-volatility, low power consumption, and fast access time for read operations are sufficient grounds to support flash memory as major storage components of modern database servers. However, we need to improve traditional transaction management scheme due to the relatively slow characteristics of column compression and flash operation as compared to RAM memory. In this research, we propose a new scheme called Column-aware Multi-Version Locking (CaMVL) scheme for efficient transaction processing. CaMVL improves transaction performance by using compression lock and multi version reads for efficiently handling slow flash write/erase operation in lock management process. We also propose a simulation model to show the performance of CaMVL. Based on the results of the performance evaluation, we conclude that CaMVL scheme outperforms the traditional scheme.

Design of Small Space Convergence Locking device Using IoT (IOT를 이용한 소규모 공간의 융합 잠금 장치 제안)

  • Park, Hyun-Joo
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.2
    • /
    • pp.45-50
    • /
    • 2021
  • In this paper, we propose the development of a smart space security device that can be opened and closed remotely using IoT. Existing space security devices can control opening and closing by breaking hardware or only using button devices or replicated keys. The recent COVID-19 crisis has created several applications for non-contact devices. In this study, we propose the development of a small space security device that has the function of unlocking through an app without touching the device. By transferring the control authority to a smartphone, device that cannot be opened or closed by only operating hardware at the user's option. It is convenient and hygienic because it can be opened and closed using an app without touching the locking device. Multiple security is possible because security can be released using an app after user authentication by fingerprint recognition and pattern input on a smartphone. If the user wishes, after using the app security, the security is released by directly touching a button installed in the safe or space or opening it with a key. In addition, by adding an inactive function to the app, it is designed so that the door of the safe cannot be opened when the key is lost or the small safe is lost. This study is expected to be able to effectively expand the security system by applying variously to objects that require security.

Dynamic Copy Security Protocol In Real-Time Database Systems (실시간 데이터베이스 시스템에서의 동적 복사 보안 프로토콜)

  • Park, Su-Yeon;Lee, Seung-Ryong;Jeong, Byeong-Su;Seung, Hyeon-U
    • Journal of KIISE:Software and Applications
    • /
    • v.26 no.8
    • /
    • pp.955-963
    • /
    • 1999
  • 다단계 보안 실시간 데이타베이스 시스템은 데이타베이스의 일관성 유지와 실시간 요구인 마감시간의 만족, 그리고 기밀성을 띤 데이타가 노출될 수 있는 비밀채널(covert-channel)의 방지라는 요구사항을 모두 만족해야 한다. 기존의 SRT-2PL(Secure Real-Time 2 Phase Locking)은 원본과 복사본으로 데이타 객체를 분리시켜 다른 등급간에 불간섭(non-interference)을 유지하여 비밀채널의 방지를 가능하게 하였으나, 복사본이 모든 데이타 객체에 대해 항상 존재하므로 메모리의 낭비가 있을 수 있고, 복사본의 갱신을 위한 갱신 큐의 관리에 따르는 오버헤드와 그에 따른 예측성 결여라는 문제점을 갖고 있다. 이를 개선하기 위하여 본 논문에서는 다단계 보안 실시간 데이타베이스 시스템의 요구사항을 모두 만족하는 동적 복사 프로토콜을 제안한다. 동적 복사 프로토콜은 로킹 기법을 기초로 동작하고, 트랜잭션의 작업에 따라 동적으로 복사본을 생성하고 삭제한다. 모의 실험 결과 제안한 동적 복사 프로토콜은 비밀채널을 방지하고 동적인 복사본의 생성으로 SRT-2PL의 단점인 메모리 낭비를 줄일 수 있으며, 예측성을 높여 마감시간 오류율을 감소시켰다.Abstract Concurrency control of real-time secure database system must satisfy not only logical data consistency but also timing constraints and security requirements associated with transactions. These conflicting natures between timing constraints and security requirements are often resolved by maintaining several versions(or secondary copies) on the same data items. In this paper, we propose a new lock-based concurrency control protocol, Dynamic Copy Security Protocol, ensuring both two conflicting requirements. Our protocol aims for reducing the storage overhead of maintaining secondary copies and minimizing the processing overhead of update history. Main idea of our protocol is to keep a secondary copy only when it is needed to resolve the conflicting read/write operations in real time secure database systems. For doing this, a secondary copy is dynamically created and removed during a transaction's read/write operations according to our protocol. We have also examined the performance characteristics of our protocol through simulation under different workloads while comparing the existing real time security protocol. The results show that our protocol consumed less storage and decreased the missing deadline transactions.

Large deformation modeling of flexible manipulators to determine allowable load

  • Esfandiar, Habib;Korayem, Moharam H.;Haghpanahi, Mohammad
    • Structural Engineering and Mechanics
    • /
    • v.62 no.5
    • /
    • pp.619-629
    • /
    • 2017
  • This paper focuses on the study of complete dynamic modeling and maximum dynamic load carrying capacity computation of N-flexible links and N-flexible joints mobile manipulator undergoing large deformation. Nonlinear dynamic analysis relies on the Timoshenko theory of beams. In order to model the system completely and precisely, structural and joint flexibility, nonlinear strain-displacement relationship, payload, and non-holonomic constraints will be considered to. A finite element solution method based on mixed method is applied to model the shear deformation. This procedure is considerably more involved than displacement based element and shear deformation can be readily included without inducing the shear locking in the element. Another goal of this paper is to present a computational procedure for determination of the maximum dynamic load of geometrically nonlinear manipulators with structural and joint flexibility. An effective measure named as Moment-Height Stability (MHS) measure is applied to consider the dynamic stability of a wheeled mobile manipulator. Simulations are performed for mobile base manipulator with two flexible links and joints. The results represent that dynamic stability constraint is sensitive when calculating the maximum carrying load. Furthermore, by changing the trajectory of end effector, allowable load also changes. The effect of torsional spring parameter on the joint deformation is investigated in a parametric sensitivity study. The findings show that, by the increase of torsional stiffness, the behavior of system approaches to a system with rigid joints and allowable load of robot is also enhanced. A comparison is also made between the results obtained from small and large deformation models. Fluctuation range in obtained figures for angular displacement of links and end effector path is bigger for large deformation model. Experimental results are also provided to validate the theoretical model and these have good agreement with the simulated results.

A Concurrency Control Method for Non-blocking Search Operation based on R-tree (논 블록킹 검색연산을 위한 R-tree 기반의 동시성 제어 기법)

  • Kim, Myung-Keun;Bae, Hae-Young
    • The KIPS Transactions:PartD
    • /
    • v.11D no.4
    • /
    • pp.809-822
    • /
    • 2004
  • In this paper, we propose a concurrency control algorithm based on R-tree for spatial database management system. The previous proposed algorithms can't prevent problem that search operation is to be blocking during update operations. In case of multidimensional indexes like R-tree, locking of update operations may be locked to several nodes, and splitting of nodes have to lock a splitting node for a long time. Therefore search operations have to waiting a long time until update operations unlock. In this paper we propose new algorithms for lock-free search operation. First, we develop a new technique using a linked-list technique on the node. The linked-list enable lock-free search when search operations search a node. Next, we propose a new technique using a version technique. The version technique enable lock-free search on the node that update operations is to be splitting.

Ultimate Strength Analysis of Stiffened Shell Structures Considering Effects of Residual Stresses (잔류응력을 고려한 보강된 쉘 구조의 극한강도 해석)

  • 김문영;최명수;장승필
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.2
    • /
    • pp.197-208
    • /
    • 2000
  • Choi et al./sup 1)/ presented the total Lagrangian formulation based upon the degenerated shell element. Geometrically correct formulation is developed by updating the direction of normal vectors and taking into account the second order rotation terms in the incremental displacement field. Assumed strain concept is adopted in order to overcome the shear locking phenomena and to eliminate the spurious zero energy mode. In this paper, for the ultimate strength analysis of stiffened shell structures considering effects of residual stresses, the return mapping algorithm based on the consistent elasto-plastic tangent modulus is applied to anisotropic shell structures. In addition, the load/displacement incremental scheme is adopted for non-linear F.E. analysis. Based on such methodology, the computer program is developed and numerical examples to demonstrate the accuracy and the effectiveness of the proposed shell element are presented and compared with the results in literatures.

  • PDF