• Title/Summary/Keyword: Non-Linear System

Search Result 1,822, Processing Time 0.033 seconds

Quaternary Depositional Environments in the Central Yellow Sea Interpreted from Chirp Seismic Data (고해상 탄성파 자료를 이용한 황해 중부 해역에서의 제4기 퇴적환경)

  • 허식;천종화;한상준;신동혁;이희일;김성렬;최동림;이용국;정백훈;석봉출
    • Journal of the Korean Geophysical Society
    • /
    • v.2 no.3
    • /
    • pp.191-200
    • /
    • 1999
  • Analysis of chirp high-resolution seismic profiles from the central Yellow Sea reveals that depositional environments in this area can be divided into three distinctive zones from west to east: (1) subaqueous delta system near the Shandong Peninsula, (2) erosional zone in the central Yellow Sea, and (3) tidal sand ridges and sand waves near the Korean Peninsula. The Shandong subaqueous delta, extending southward from the Shandong Peninsula, changes gradually into prodelta southeastward. The sediments originated from the Yellow River are transported southward along the Chinese coastal area. The erosional zone in the central Yellow Sea contains numerous paleochannels and shows linear erosional features trending northwest-southeast. The erosional zone would be dominated by non-depositional or erosional processes during the Holocene. Tidal sand ridges and sand waves are well developed along the western coast of Korea. The residual sands, which were originally fluvial sediments at the sea-level lowstand, are interpreted as the result of winnowing process during the sea-level rise. Modern sand ridges generally migrates in a northeast-southwestern direction, which coincide with dominant tidal current direction.

  • PDF

Time-dependent Evolution of Accretion Disk Mass in a Black Hole Microquasar Candidate A0620-00 (블랙홀 마이크로퀘이사 후보 A0620-00의 강착원반 질량의 시간적 진화)

  • Kim, Soon-Wook
    • Journal of the Korean earth science society
    • /
    • v.29 no.7
    • /
    • pp.579-585
    • /
    • 2008
  • The time-dependent evolution of disk mass for outburst limit cycle in a black hole microquasar is calculated based on the non-linear hydrodynamic model of thermally unstable accretion disk. The physical parameters such as black hole mass, disk size and mass transfer rate are adopted to reproduce the historical 1975 outburst observed in a prototype black hole X-ray nova A0620-00. The time-dependent effect of irradiation from the central hot region to the disk is considered in two ways: direct irradiation and indirect irradiation reflected from hot accretion flow above the disk. The accretion disk thermal instability model can account for the bolometric luminosity appropriate to typical characteristics of system luminosity observed in X-ray transients during the whole cycle of the outburst evolution. The maximum mass of the accretion disk, ${\sim}4.03{\times}10^{24}g$, is achieved at the ignition of an outburst, and the minimum value, ${\sim}8.54{\times}10^{23}g$, is reached during the cooling decay to quiescence. The disk mass varies ${\sim}5$ times during outburst limit cycle.

Finite Element Analysis for the Contact Stress of Ultra-high Molecular Weight Polyethylene in Total Knee Arthroplasty (전 슬관절 치환 성형술에 사용되는 초고분자량 폴리에틸렌 삽입물의 접촉응력에 관한 유한요소해석)

  • Jo, Cheol-Hyeong;Choe, Jae-Bong;Choe, Gwi-Won;Yun, Gang-Seop;Gang, Seung-Baek
    • Journal of Biomedical Engineering Research
    • /
    • v.20 no.1
    • /
    • pp.37-44
    • /
    • 1999
  • Because of bone resorption, wear of ultra-high molecular weight polyethylene(UHMWPE) in total knee arthroplasty has been recognized as a major factor in long-term failure of knee implant. The surface damage and the following harmful wear debris of UHMWPE is largely related to contact stress. Most of the previous studies focused on the contact condition only at the articulating surface of UHMWPE. Recently, contact stress at the metal-backing interface has been implicated as one of major factors in UHMWPE wear. Therefore, the purpose of the is study is to investigate the effect of the contact stress for different thickness, conformity friction coefficient, and flexion degree of the UHMWPE component in total knee system, considering the contact conditions at both interfaces. In this study, a two-dimensional non-linear plane strain finite element model was developed. The results showed that the maximum value of von-Mises stress occurred below the articulating surface and the contact stress was lower for the more conforming models. All-polyethylene component showed lower stress distribution than the metal-backed component. With increased friction coefficient on the tibiofemoral contact surface, the maximum shear stress increased about twofold.

  • PDF

Modeling of Medium Temperature Drops of the Elevated-bench Hydroponics for Strawberry Cultivation during Low Temperature Season (저온기 딸기 고설 수경재배시 온실기온에 따른 배지내 온도강하 모델 개발)

  • Park, Jae-Wan;Ha, Yu-Shin;Kim, Ki-Dong;Park, Dae-Heum;Lee, Ki-Myung;Jun, Ha-Joon;Kwon, Soon-Gu;Choi, Won-Sik;Chung, Sung-Won
    • Journal of Bio-Environment Control
    • /
    • v.19 no.3
    • /
    • pp.123-129
    • /
    • 2010
  • A study on modeling of medium temperature drops of the elevated-bench hydroponic system for strawberry cultivation during low temperature season was conducted. Four different conditions were used for the experiment. These consisted of two kinds of bed types (plant, V), four kinds of medium (rice, perlite, rice hulls80% and peatmoss20%, perlite80% and peatmoss20%), two kinds of mulched bed (mulched, non mulched) and four kinds of greenhouse air temperature (l.5, 3.2, 5.0, $6.7^{\circ}C$), and the results were summarized as follows: Temperature drop of medium in the V-bed was slower than that in the plant bed, showing better insulation effect of V-bed. Temperature drop of medium with mulching on the top of the bed was slower than the case without mulching, as a result, the beneficial effect of temperature drop was appeared in mulched bed. Linear regression of the temperature descent rate and the temperature difference between medium and air showed significant correlation. The regression equation for the Pearlite80% and Peatmoss20% in the V-bed was f(x) = -0.2656 + 0.1345x at the $R^2$ of 0.9269. Using the model, the temperature drop during night can be predicted for the various media at the different depths.

Robust Trajectory Tracking Control of a Mobile Robot Combining PDC and Integral Sliding Mode Control (PDC와 적분 슬라이딩 모드 제어를 결합한 이동 로봇의 강인 궤도 추적 제어)

  • Park, Min-soo;Park, Seung-kyu;Ahn, Ho-kyun;Kwak, Gun-pyong;Yoon, Tae-sung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.7
    • /
    • pp.1694-1704
    • /
    • 2015
  • In this paper, a robust trajectory tracking control method of a wheeled mobile robot is newly proposed combining the PDC and the ISMC. The PDC is a relatively simple and easy control method for nonlinear system compared to the other non-linear control methods. And the ISMC can have robust and stable control characteristics against model uncertainties and disturbances from the initial time by placing the states on the sliding plane with desired nominal dynamics. Therefore, the proposed PDC+ISMC trajectory tracking control method shows robust trajectory tracking performance in spite of external disturbance. The tracking performance of the proposed method is verified through simulations. Even though the disturbance increases, the proposed method keeps the performance of the PDC method when there is no disturbance. However, the PDC trajectory tracking control method has increasing tracking error unlike the proposed method when the disturbance increases.

Analysis of Intrafractional Mass Variabilities Using Deformable Image Registration Program (영상변조 프로그램을 이용한 호흡 위상 간 종양의 움직임 특성 분석)

  • Cho, Jeong-Hee;Kim, Joo-Hoo;Seo, Sun-Youl;Han, Dong-Kyoon
    • Journal of radiological science and technology
    • /
    • v.35 no.2
    • /
    • pp.173-181
    • /
    • 2012
  • The aim of this study is to compare the geometric characteristics of the lung tumor, such as tumor centroid, HU change relative to breath phase, depending on tumor location and adhesion using 4DCT and deformable image registration program (MIMVista). The Y axis change was most significant and the mean Y axis centroid fluctuation was $7.32{\pm}6.88mm$ in lower lung tumor. The mean HU variation in lower lung mass has changed more than other locations, and its mean HU variation was $7.7{\pm}4.97%$ and non-adhered mass was more changed. Correlation for the mass volume between 3DCT and MIP was very high and its coefficient was 0.998. The effect of tumor location, adhesion and diaphragm excursion to geometric uncertainties was analyzed by linear regression model, it was influenced to mass deformation and geometrical variation so much except diaphragm excursion. but intra-fractional and inter-patient's uncertainties were great, so it couldn't find any exact deformation trend.

Seismic Fragility Analysis of Rahmen-type Continuous Bridge Supported by High Piers (고교각으로 지지된 라멘형 연속교의 지진취약도 분석)

  • Kang, Pan-Seung;Hong, Ki-Nam;Yeon, Yeong-Mo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.5
    • /
    • pp.84-95
    • /
    • 2019
  • This paper reports the process of seismic fragility analysis for the rahman-type continuous bridge system. The target structure was the five span highway bridge with maximum pier hight of 72m. OpenSees software was used for the nonlinear time history analysis. In this study, 50 ground motions are considered for nonlinear time history analysis. For each ground motion, PGA was scaled from 0.1g to 2.0g with intervals of 0.1g in order to consider a wide range of the seismic intensity measure. In addition, yield displacement and ultimate displacement of each pier were calculated through section analysis. Based on the result of non linear time history analysis and section analysis, damage condition of target bridge was classified according to the definition of damage condition proposed by Barbat et al. As a result, it was predicted that Extensive Damage occurred at P1 when 0.731 g earthquake occurred in the longitudinal direction. Based on the seismic fragility analysis results, it is found that the probability of occurrence of Extensive Damage in the 4,800 - year period earthquake was about 4.2%. Therefore the target bridge has enough safety for earthquake.

Stiffness Improvement of Timing Belt in Power Transmission (동력전달용 타이밍벨트의 강성 개선)

  • Lee, Kyeong-Yeon;Byun, Kyung-Seok
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.23 no.1
    • /
    • pp.1-7
    • /
    • 2022
  • As a power transmission element, the timing belt is a toothed transmission belt that takes advantages of V-belts and gears. It has characteristics of non-slip and low noise. It is used as a power transmission device when transmitting power from a rotating shaft or linear motion in a mechanism. Rotation can be accurately transmitted through a belt pulley with grooves like a gear and a timing belt with grooves to precisely match with the belt pulley. In particular, in the mechanism in which the timing belt is used for the output shaft, the dynamic characteristics including the rigidity of the timing belt determine the transmission characteristics of the system, so its importance increases. In this paper, a stiffness reinforced belt that can be applied to a timing belt with a limited range of motion to increase its stiffness is proposed. To study the dynamic characteristics of the stiffness reinforced belt, the equation of motion for the stiffness reinforced belt was established, and a simulation model for the stiffness reinforced belt was created and analyzed. In order to confirm the analysis results of the motion equation and simulation model, a 1-axis rotation experimental equipment using a stiffness reinforcing belt was developed and the experiment was conducted. Through motion equations, simulation models, and experiment results, it was confirmed that the stiffness and dynamic characteristics of the timing belt could be improved by applying the proposed stiffness reinforcement belt.

Comparative analysis on darcy-forchheimer flow of 3-D MHD hybrid nanofluid (MoS2-Fe3O4/H2O) incorporating melting heat and mass transfer over a rotating disk with dufour and soret effects

  • A.M. Abd-Alla;Esraa N. Thabet;S.M.M.El-Kabeir;H. A. Hosham;Shimaa E. Waheed
    • Advances in nano research
    • /
    • v.16 no.4
    • /
    • pp.325-340
    • /
    • 2024
  • There are several novel uses for dispersing many nanoparticles into a conventional fluid, including dynamic sealing, damping, heat dissipation, microfluidics, and more. Therefore, melting heat and mass transfer characteristics of a 3-D MHD Hybrid Nanofluid flow over a rotating disc with presenting dufour and soret effects are assessed numerically in this study. In this instance, we investigated both ferric sulfate and molybdenum disulfide as nanoparticles suspended within base fluid water. The governing partial differential equations are transformed into linked higher-order non-linear ordinary differential equations by the local similarity transformation. The collection of these deduced equations is then resolved using a Chebyshev spectral collocation-based algorithm built into the Mathematica software. To demonstrate how different instances of hybrid/ nanofluid are impacted by changes in temperature, velocity, and the distribution of nanoparticle concentration, examples of graphical and numerical data are given. For many values of the material parameters, the computational findings are shown. Simulations conducted for different physical parameters in the model show that adding hybrid nanoparticle to the fluid mixture increases heat transfer in comparison to simple nanofluids. It has been identified that hybrid nanoparticles, as opposed to single-type nanoparticles, need to be taken into consideration to create an effective thermal system. Furthermore, porosity lowers the velocities of simple and hybrid nanofluids in both cases. Additionally, results show that the drag force from skin friction causes the nanoparticle fluid to travel more slowly than the hybrid nanoparticle fluid. The findings also demonstrate that suction factors like magnetic and porosity parameters, as well as nanoparticles, raise the skin friction coefficient. Furthermore, It indicates that the outcomes from different flow scenarios correlate and are in strong agreement with the findings from the published literature. Bar chart depictions are altered by changes in flow rates. Moreover, the results confirm doctors' views to prescribe hybrid nanoparticle and particle nanoparticle contents for achalasia patients and also those who suffer from esophageal stricture and tumors. The results of this study can also be applied to the energy generated by the melting disc surface, which has a variety of industrial uses. These include, but are not limited to, the preparation of semiconductor materials, the solidification of magma, the melting of permafrost, and the refreezing of frozen land.

Effect of Inhomogeneity correction for lung volume model in TPS (Lnug Volume을 모델로 한 방사선치료계획 시 불균질 조직 보정에 따른 효과)

  • Chung SeYoung;Lee SangRok;Kim YoungBum;Kwon YoungHo
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.16 no.1
    • /
    • pp.57-65
    • /
    • 2004
  • Introduction : The phantom that includes high density materials such as steel was custom-made to fix lung and bone in order to evaluation inhomogeneity correction at the time of conducting radiation therapy to treat lung cancer. Using this, values resulting from the inhomogeneous correction algorithm are compared on the 2 and 3 dimensional radiation therapy planning systems. Moreover, change in dose calculation was evaluated according to inhomogeneous by comparing with the actual measurement. Materials and Methods : As for the image acquisition, inhomogeneous correction phantom(Pig's vertebra, steel(8.21g/cm3), cork(0.23 g/cm3)) that was custom-made and the CT(Volume zoom, Siemens, Germany) were used. As for the radiation therapy planning system, Marks Plan(2D) and XiO(CMS, USA, 3D) were used. To compare with the measurement value, linear accelerator(CL/1800, Varian, USA) and ion chamber were used. Image, obtained from the CT was used to obtain point dose and dose distribution from the region of interest (ROI) while on the radiation therapy planning device. After measurement was conducted under the same conditions, value on the treatment planning device and measured value were subjected to comparison and analysis. And difference between the resulting for the evaluation on the use (or non-use) of inhomogeneity correction algorithm, and diverse inhomogeneity correction algorithm that is included in the radiation therapy planning device was compared as well. Results : As result of comparing the results of measurement value on the region of interest within the inhomogeneity correction phantom and the value that resulted from the homogeneous and inhomogeneous correction, gained from the therapy planning device, margin of error of the measurement value and inhomogeneous correction value at the location 1 of the lung showed $0.8\%$ on 2D and $0.5\%$ on 3D. Margin of error of the measurement value and inhomogeneous correction value at the location 1 of the steel showed $12\%$ on 2D and $5\%$ on 3D, however, it is possible to see that the value that is not correction and the margin of error of the measurement value stand at $16\%$ and $14\%$, respectively. Moreover, values of the 3D showed lower margin of error compared to 2D. Conclusion : Revision according to the density of tissue must be executed during radiation therapy planning. To ensure a more accurate planning, use of 3D planning system is recommended more so than the 2D Planning system to ensure a more accurate revision on the therapy plan. Moreover, 3D Planning system needs to select and use the most accurate and appropriate inhomogeneous correction algorithm through actual measurement. In addition, comparison and analysis through TLD or film dosimetry are needed.

  • PDF