• Title/Summary/Keyword: Non-Linear Optimization

Search Result 341, Processing Time 0.027 seconds

Structured Static Output Feedback Stabilization of Discrete Time Linear Systems (구조적인 제약이 있는 이산시간 선형시스템의 정적출력 되먹임 안정화 제어기 설계)

  • Lee, Joonhwa
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.3
    • /
    • pp.233-236
    • /
    • 2015
  • In this paper, a nonlinear optimization problem is proposed to obtain a structured static output feedback controller for discrete time linear systems. The proposed optimization problem has LMI (Linear Matrix Inequality) constraints and a non-convex objective function. Using the conditional gradient method, we can obtain suboptimal solutions of the proposed optimization problem. Numerical examples show the effectives of the proposed approach.

Bidirectional Link Resource Allocation Strategy in GFDM-based Multiuser SWIPT Systems

  • Xu, Xiaorong;Sun, Minghang;Zhu, Wei-Ping;Feng, Wei;Yao, Yingbiao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.1
    • /
    • pp.319-333
    • /
    • 2022
  • In order to enhance system energy efficiency, bidirectional link resource allocation strategy in GFDM-based multiuser SWIPT systems is proposed. In the downlink channel, each SWIPT user applies power splitting (PS) receiver structure in information decoding (ID) and non-linear energy harvesting (EH). In the uplink channel, information transmission power is originated from the harvested energy. An optimization problem is constructed to maximize weighted sum ID achievable rates in the downlink and uplink channels via bidirectional link power allocation as well as subcarriers and subsymbols scheduling. To solve this non-convex optimization problem, Lagrange duality method, sub-gradient-based method and greedy algorithm are adopted respectively. Simulation results show that the proposed strategy is superior to the fixed subcarrier scheme regardless of the weighting coefficients. It is superior to the heuristic algorithm in larger weighting coefficients scenario.

Optimum design of geometrically non-linear steel frames using artificial bee colony algorithm

  • Degertekin, S.O.
    • Steel and Composite Structures
    • /
    • v.12 no.6
    • /
    • pp.505-522
    • /
    • 2012
  • An artificial bee colony (ABC) algorithm is developed for the optimum design of geometrically non-linear steel frames. The ABC is a new swarm intelligence method which simulates the intelligent foraging behaviour of honeybee swarm for solving the optimization problems. Minimum weight design of steel frames is aimed under the strength, displacement and size constraints. The geometric non-linearity of the frame members is taken into account in the optimum design algorithm. The performance of the ABC algorithm is tested on three steel frames taken from literature. The results obtained from the design examples demonstrate that the ABC algorithm could find better designs than other meta-heuristic optimization algorithms in shorter time.

Stable Tracking Control to a Non-linear Process Via Neural Network Model

  • Zhai, Yujia
    • Journal of the Korea Convergence Society
    • /
    • v.5 no.4
    • /
    • pp.163-169
    • /
    • 2014
  • A stable neural network control scheme for unknown non-linear systems is developed in this paper. While the control variable is optimised to minimize the performance index, convergence of the index is guaranteed asymptotically stable by a Lyapnov control law. The optimization is achieved using a gradient descent searching algorithm and is consequently slow. A fast convergence algorithm using an adaptive learning rate is employed to speed up the convergence. Application of the stable control to a single input single output (SISO) non-linear system is simulated. The satisfactory control performance is obtained.

Minimization of Trim Loss Problem in Paper Mill Scheduling Using MINLP (MINLP를 이용한 제지 공정의 파지 손실 최소화)

  • Na, Sung-hoon;Ko, Dae-Ho;Moon, Il
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.392-392
    • /
    • 2000
  • This study performs optimization of paper mill scheduling using MINLP(Mixed-Integer Non-Linear Programming) method and 2-step decomposing strategy. Paper mill process is normally composed of five units: paper machine, coater, rewinder, sheet cutter and roll wrapper/ream wrapper. Various kinds of papers are produced through these units. The bottleneck of this process is how to cut product papers efficiently from raw paper reel and this is called trim loss problem or cutting stock problem. As the trim must be burned or recycled through energy consumption, minimizing quantity of the trim is important. To minimize it, the trim loss problem is mathematically formulated in MINLP form of minimizing cutting patterns and trim as well as satisfying customer's elder. The MINLP form of the problem includes bilinearity causing non-linearity and non-convexity. Bilinearity is eliminated by parameterization of one variable and the MINLP form is decomposed to MILP(Mixed-Integer Linear programming) form. And the MILP problem is optimized by means of the optimization package. Thus trim loss problem is efficiently minimized by this 2-step optimization method.

  • PDF

Structural Optimization for Non-Linear Behavior Using Equivalent Static Loads by Proportional Transformation of Loads (비례하중변환법의 등가정하중을 이용한 비선형 거동을 하는 구조물의 최적설계)

  • Park Ki-Jong;Kwon Yong-Deok;Song Kee-Nam;Park Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.1 s.244
    • /
    • pp.66-75
    • /
    • 2006
  • Nonlinear response structural optimization using equivalent static loads (NROESL) has been proposed. Nonlinear response optimization is solved by sequential linear response optimization with equivalent static loads which are generated from the nonlinear responses and linear stiffness matrix. The linear stiffness matrix should be obtained in NROESL, and this process can be fairly difficult for some applications. Proportional transformation of loads (PTL) is proposed to overcome the difficulties. Equivalent static loads are obtained by PTL. It is the same as NROESL except for the process of calculating equivalent static loads. PTL is developed for large-scale probems. First, linear and nonlinear responses are evaluated from linear and nonlinear analyses, respectively. At a DOF of the finite element method, the ratio of the two responses is calculated and an equivalent static load is made by multiplying the ratio and the loads for linear analysis. Therefore, the mumber of the equivalent static loads is as many as that of DOF's and an equivalent static load is used with the reponse for the corresponding DOF in the optimization process. All the equivalent static loads are used as multiple loading conditions during linear response optimization. The process iterates until it converges. Examples are solved by using the proposed method and the results are compared with conventional methods.

Minimum-weight design of non-linear steel frames using combinatorial optimization algorithms

  • Hayalioglu, M.S.;Degertekin, S.O.
    • Steel and Composite Structures
    • /
    • v.7 no.3
    • /
    • pp.201-217
    • /
    • 2007
  • Two combinatorial optimization algorithms, tabu search and simulated annealing, are presented for the minimum-weight design of geometrically non-linear steel plane frames. The design algorithms obtain minimum weight frames by selecting suitable sections from a standard set of steel sections such as American Institute of Steel Construction (AISC) wide-flange (W) shapes. Stress constraints of AISC Load and Resistance Factor Design (LRFD) specification, maximum and interstorey drift constraints and size constraints for columns were imposed on frames. The stress constraints of AISC Allowable Stress Design (ASD) were also mounted in the two algorithms. The comparisons between AISC-LRFD and AISC-ASD specifications were also made while tabu search and simulated annealing were used separately. The algorithms were applied to the optimum design of three frame structures. The designs obtained using tabu search were compared to those where simulated annealing was considered. The comparisons showed that the tabu search algorithm yielded better designs with AISC-LRFD code specification.

Application of Method of Moving Asymptotes for Non-Linear Structures (비선형 구조물에 대한 이동 점근법(MMA)의 적용)

  • 진경욱;한석영;최동훈
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.141-146
    • /
    • 1999
  • A new method, so called MMA(Method of Moving Asymptotes) was applied to the optimization problems of non-linear functions and non-linear structures. In each step of the iterative process, tile MMA generates a strictly convex approximation subproblems and solves them by using the dual problems. The generation of these subproblems is controlled by so called 'moving asymptotes', which may both make no oscillation and speed up tile convergence rate of optimization process. By contrast in generalized dual function, the generated function by MMA is always explicit type. Both the objective and behaviour constraints which were approximated are optimized by dual function. As the results of some examples, it was found that this method is very effective to obtain the global solution for problems with many local solutions. Also it was found that MMA is a very effective approximate method using the original function and its 1st derivatives.

  • PDF

Modified complex mode superposition design response spectrum method and parameters optimization for linear seismic base-isolation structures

  • Huang, Dong-Mei;Ren, Wei-Xin;Mao, Yun
    • Earthquakes and Structures
    • /
    • v.4 no.4
    • /
    • pp.341-363
    • /
    • 2013
  • Earthquake response calculation, parametric analysis and seismic parameter optimization of base-isolated structures are some critical issues for seismic design of base-isolated structures. To calculate the earthquake responses for such non-symmetric and non-classical damping linear systems and to implement the earthquake resistant design codes, a modified complex mode superposition design response spectrum method is put forward. Furthermore, to do parameter optimization for base-isolation structures, a graphical approach is proposed by analyzing the relationship between the base shear ratio of a seismic base-isolation floor to non-seismic base-isolation one and frequency ratio-damping ratio, as well as the relationship between the seismic base-isolation floor displacement and frequency ratio-damping ratio. In addition, the influences of mode number and site classification on the seismic base-isolation structure and corresponding optimum parameters are investigated. It is demonstrated that the modified complex mode superposition design response spectrum method is more precise and more convenient to engineering applications for utilizing the damping reduction factors and the design response spectrum, and the proposed graphical approach for parameter optimization of seismic base-isolation structures is compendious and feasible.

A Study on Adjustment Optimization for Dynamic Balancing Test of Helicopter Main Rotor Blade (헬리콥터 주로터 블레이드 동적밸런싱 시험을 위한 조절변수 최적화 연구)

  • Song, KeunWoong;Choi, JongSoo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.6_spc
    • /
    • pp.736-743
    • /
    • 2016
  • This study describes optimization methods for adjustment of helicopter main rotor tracking and balancing (RTB). RTB is a essential process for helicopter operation and maintenance. Linear and non-linear models were developed with past RTB test results for estimation of RTB adjustment. Then global and sequential optimization methods were applied to the each of models. Utilization of the individual optimization method with each model is hard to fulfill the RTB requirements because of different characteristics of each blade. Therefore an ensemble model was used to integrate every estimated adjustment result, and an adaptive method was also applied to adjustment values of the linear model to update for next estimations. The goal of this developed RTB adjustment optimization program is to achieve the requirements within 2 run. Additional tests for comparison of weight factor of the ensemble model are however necessary.