DOI QR코드

DOI QR Code

Minimum-weight design of non-linear steel frames using combinatorial optimization algorithms

  • Hayalioglu, M.S. (Department of Civil Engineering, Dicle University) ;
  • Degertekin, S.O. (Department of Civil Engineering, Dicle University)
  • Received : 2006.12.11
  • Accepted : 2007.03.08
  • Published : 2007.06.25

Abstract

Two combinatorial optimization algorithms, tabu search and simulated annealing, are presented for the minimum-weight design of geometrically non-linear steel plane frames. The design algorithms obtain minimum weight frames by selecting suitable sections from a standard set of steel sections such as American Institute of Steel Construction (AISC) wide-flange (W) shapes. Stress constraints of AISC Load and Resistance Factor Design (LRFD) specification, maximum and interstorey drift constraints and size constraints for columns were imposed on frames. The stress constraints of AISC Allowable Stress Design (ASD) were also mounted in the two algorithms. The comparisons between AISC-LRFD and AISC-ASD specifications were also made while tabu search and simulated annealing were used separately. The algorithms were applied to the optimum design of three frame structures. The designs obtained using tabu search were compared to those where simulated annealing was considered. The comparisons showed that the tabu search algorithm yielded better designs with AISC-LRFD code specification.

Keywords

References

  1. Abido, M. A. (2002),"Optimal power flow using tabu search algorithm", Electric Power Components and Systems, 30(5), 469-483. https://doi.org/10.1080/15325000252888425
  2. Ad Hoc Committee on Serviceability Research (1986),"Structural serviceability: a critical appraisal and research needs", J. Struct. Eng., ASCE, 112(12), 2646-2664. https://doi.org/10.1061/(ASCE)0733-9445(1986)112:12(2646)
  3. American Institute of Steel Construction (1989), Manual of steel construction - allowable stress design, Chicago, IIIionis.
  4. American Institute of Steel Construction (2001), Manual of steel construction: load and resistance factor design, Chicago, Illionis.
  5. Balling, R. J. (1991),"Optimal steel frame design by simulated annealing", J. Struct. Eng., ASCE, 117, 1780-1795. https://doi.org/10.1061/(ASCE)0733-9445(1991)117:6(1780)
  6. Barski, M. (2006),"Optimal design of shells against buckling subjected to combined loadings", Struct. Multidiscip. Optimiz., 31, 211-222. https://doi.org/10.1007/s00158-005-0576-3
  7. Bennage, W. A. (1994),"Structural optimization using simulated annealing and tabu search", MSc Thesis, The University of Wisconsin, Milwaukee.
  8. Bennage, W. A. and Dhingra, A. K. (1995a),"Single and multiobjective structural optimization in discrete continuous variables using simulated annealing", Inter. J. Numer. Methods Eng., 38, 2753- 2773. https://doi.org/10.1002/nme.1620381606
  9. Bennage, W. A. and Dhingra, A. K. (1995b),"Optimization of truss topology using tabu search", Inter. J. Numer. Methods Eng., 38, 4035-4052. https://doi.org/10.1002/nme.1620382308
  10. Bland, J. A. (1995),"Discrete-variable optimal structural design using tabu search", Struct. Optimiz., 10, 87-93. https://doi.org/10.1007/BF01743535
  11. Bland, J. A. (1998a),"Structural design optimization with reliability constraints using tabu search", Eng., Optimiz., 30, 55-74. https://doi.org/10.1080/03052159808941238
  12. Bland, J. A. (1998b),"A memory-based technique for optimal structural design", Eng. Appl. Artif. Inte., 11(3), 319-325. https://doi.org/10.1016/S0952-1976(97)00053-5
  13. Ceranic, B., Fryer, C. and Baines, R. W. (2001),"An application of simulated annealing to the optimum design of concrete retaining structures", Comput. Struct., 79, 1569-1581. https://doi.org/10.1016/S0045-7949(01)00037-2
  14. Chamberland, S. and Sanso, B. (2002),"Tabu search and post optimization algorithms for the update of telecommunication networks", Canadian J. Elect. Comput. Eng., 27(2), 67-74.
  15. Chen, T. Y. and Su, J. J. (2002),"Efficiency improvement of simulated annealing in optimal structural designs", Ad. Eng. Soft., 33, 675-680. https://doi.org/10.1016/S0965-9978(02)00058-3
  16. Cunha, M. D. and Riberio, L. (2004),"Tabu search algorithms for water network optimization", Eur. J. Operational Res., 157(3), 746-758. https://doi.org/10.1016/S0377-2217(03)00242-X
  17. Dhingra, A. K. and Bennage, W. A. (1995a),"Discrete and continuous variable structural optimization using tabu search", Eng. Optimiz., 24, 177-196. https://doi.org/10.1080/03052159508941189
  18. Dhingra, A. K. and Bennage, W. A. (1995b),"Topological optimization truss structures using simulated annealing", Eng. Optimiz., 24, 239-259. https://doi.org/10.1080/03052159508941192
  19. Dumonteil, P. (1992),"Simple equations for effective length factors", Eng. J., AISC, 3, 111-115.
  20. Erdal, O. and Sonmez, F. O. (2005),"Optimum design of composite laminates for maximum buckling load capacity using simulated annealing", Compos. Struct., 71(1), 45-52. https://doi.org/10.1016/j.compstruct.2004.09.008
  21. Glover, F. (1989),"Tabu search-Part I", ORSA Journal on Computing, 1(3), 190-206. https://doi.org/10.1287/ijoc.1.3.190
  22. Glover, F. (1990),"Tabu search-Part II", ORSA Journal on Computing, 2(1), 4-32. https://doi.org/10.1287/ijoc.2.1.4
  23. Glover, F. and Laguna, M. (1997), Tabu Search, Kluwer Academic Publishers, Massachusetts.
  24. Hasancebi, O. and Erbatur, F. (2002),"Layout optimisation of trusses using simulated annealing", Adv. Eng. Soft., 33, 681-696. https://doi.org/10.1016/S0965-9978(02)00049-2
  25. Huang, M. W. and Arora, J. S. (1997),"Optimal design steel structures using standard sections", Struct. Optimiz., 14, 24-35. https://doi.org/10.1007/BF01197555
  26. Jeon, Y. J. and Kim, J. C. (2004),"Application of simulated annealing and tabu search for loss minimization in distribution systems", Inter. J. Elec. Power Energy Sys., 26(1), 9-18. https://doi.org/10.1016/S0142-0615(03)00066-8
  27. Kirkpatrick, S., Gelatt, C. D. and Vecchi, M. P. (1983),"Optimization by simulated annealing", Science, 220, 671-680. https://doi.org/10.1126/science.220.4598.671
  28. Kumar, S., Shekbar, S. and Chakraborty, D. (2006),"Optimal pumping from skimming wells", J. Hydrolgy Eng., 11(5), 464-471. https://doi.org/10.1061/(ASCE)1084-0699(2006)11:5(464)
  29. Levy, R. and Spillers, W. R. (1994), Analysis of Geometrically Nonlinear Structures, Chapman and Hall, New York.
  30. Manoharan, S. and Shanmuganathan, S. (1999),"A comparison of search mechanisms for structural optimization", Comput. Struct., 73(1-5), 363-372. https://doi.org/10.1016/S0045-7949(98)00287-9
  31. Metropolis, N., Rosenbluth, A., Teller, A. and Teller, E. (1953),"Equation of state calculations by fast computing machines", J. Chemical Phy., 21, 1087-1092. https://doi.org/10.1063/1.1699114
  32. Moita, J. M. S., Correia, V. M. F., Martins, P. G., Soares, C. M. M. and Soares, C. A. M. (2006),"Optimal design in vibration control of adaptive structures using simulated annealing algorithm", Compo. Struct., 75(1- 4), 79-87. https://doi.org/10.1016/j.compstruct.2006.04.062
  33. Pai, N., Kaw, A. and Weng, M. (2003),"Optimization of laminate stacking sequence for failure load maximization using tabu search", Composites Part B-Engineering, 34(4), 405-413. https://doi.org/10.1016/S1359-8368(02)00135-X
  34. Pantelidis, C. P. and Tzan, S. R. (2000),"Modified iterated annealing algorithm for structural synthesis", Adv. Eng. Soft., 31, 391-400. https://doi.org/10.1016/S0965-9978(00)00007-7
  35. Park, H. S. and Sung, C. W. (2002),"Optimization of steel structures using distributed simulated annealing algorithm on a cluster of personal computers", Comput. Struct., 80, 1305-1316. https://doi.org/10.1016/S0045-7949(02)00073-1
  36. Rama Mohan Rao, A. and Arvind, N. (2007),"Optimal stacking sequence design of laminate composite structures using tabu embedded simulated annealing", Struct. Eng. Mech., 25(2), 239-268. https://doi.org/10.12989/sem.2007.25.2.239
  37. Richards, E. W. and Gunn, E. A. (2003),"Tabu search design for difficult forest management optimization problems", Canadian J. Forest Res., 33(6), 1126-1133. https://doi.org/10.1139/x03-039
  38. Sait, S. M. and Zahra, M. M. (2002),"Tabu search based circuit optimization", Eng. Appl. Artif. Intel., 15(3-4), 357-368. https://doi.org/10.1016/S0952-1976(02)00054-4
  39. Sathiya, P., Aranvindan, S., Haq, A. N. and Panneerselvam, K. (2006),"Optimization of friction welding parameters using simulated annealing", Indian J. Eng. Mater. Sci., 13(1), 37-44.
  40. Teegavarapu, R. S. V., Simonovic, S. P. and Slobodan, P. (2002),"Optimal operation of reservoir systems using simulated annealing", Water Resources Management, 16(5), 401-428. https://doi.org/10.1023/A:1021993222371
  41. Zhao, F. and Zeng, X. G. (2006),"Simulated annealing-genetic algorithm for transit network optimization", J. Comput. Civ. Eng., 20(1), 57-68. https://doi.org/10.1061/(ASCE)0887-3801(2006)20:1(57)

Cited by

  1. A hybrid tabu-simulated annealing heuristic algorithm for optimum design of steel frames vol.8, pp.6, 2008, https://doi.org/10.12989/scs.2008.8.6.475
  2. An improved fireworks algorithm for discrete sizing optimization of steel skeletal structures 2018, https://doi.org/10.1080/0305215X.2017.1417402
  3. An Enhanced Imperialist Competitive Algorithm for optimum design of skeletal structures 2018, https://doi.org/10.1016/j.swevo.2017.12.001