• Title/Summary/Keyword: Non-Linear Algorithm

Search Result 792, Processing Time 0.03 seconds

Design of Hierarchically Structured Clustering Algorithm and its Application (계층 구조 클러스터링 알고리즘 설계 및 그 응용)

  • Bang, Young-Keun;Park, Ha-Yong;Lee, Chul-Heui
    • Journal of Industrial Technology
    • /
    • v.29 no.B
    • /
    • pp.17-23
    • /
    • 2009
  • In many cases, clustering algorithms have been used for extracting and discovering useful information from non-linear data. They have made a great effect on performances of the systems dealing with non-linear data. Thus, this paper presents a new approach called hierarchically structured clustering algorithm, and it is applied to the prediction system for non-linear time series data. The proposed hierarchically structured clustering algorithm (called HCKA: Hierarchical Cross-correlation and K-means clustering Algorithms) in which the cross-correlation and k-means clustering algorithm are combined can accept the correlationship of non-linear time series as well as statistical characteristics. First, the optimal differences of data are generated, which can suitably reveal the characteristics of non-linear time series. Second, the generated differences are classified into the upper clusters for their predictors by the cross-correlation clustering algorithm, and then each classified differences are classified again into the lower fuzzy sets by the k-means clustering algorithm. As a result, the proposed method can give an efficient classification and improve the performance. Finally, we demonstrates the effectiveness of the proposed HCKA via typical time series examples.

  • PDF

Genetic algorithm based optimum design of non-linear steel frames with semi-rigid connections

  • Hayalioglu, M.S.;Degertekin, S.O.
    • Steel and Composite Structures
    • /
    • v.4 no.6
    • /
    • pp.453-469
    • /
    • 2004
  • In this article, a genetic algorithm based optimum design method is presented for non-linear steel frames with semi-rigid connections. The design algorithm obtains the minimum weight frame by selecting suitable sections from a standard set of steel sections such as European wide flange beams (i.e., HE sections). A genetic algorithm is employed as optimization method which utilizes reproduction, crossover and mutation operators. Displacement and stress constraints of Turkish Building Code for Steel Structures (TS 648, 1980) are imposed on the frame. The algorithm requires a large number of non-linear analyses of frames. The analyses cover both the non-linear behaviour of beam-to-column connection and $P-{\Delta}$ effects of beam-column members. The Frye and Morris polynomial model is used for modelling of semi-rigid connections. Two design examples with various type of connections are presented to demonstrate the application of the algorithm. The semi-rigid connection modelling results in more economical solutions than rigid connection modelling, but it increases frame drift.

Adaptive control of rotationally non-linear asymmetric structures under seismic loads

  • Amini, Fereidoun;Rezazadeh, Hassan;Afshar, Majid Amin
    • Structural Engineering and Mechanics
    • /
    • v.65 no.6
    • /
    • pp.721-730
    • /
    • 2018
  • This paper aims to inspect the effectiveness of the Simple Adaptive Control Method (SACM) to control the response of asymmetric buildings with rotationally non-linear behavior under seismic loads. SACM is a direct control method and was previously used to improve the performance of linear and non-linear structures. In most of these studies, the modeled structures were two-dimensional shear buildings. In reality, the building plans might be asymmetric, which cause the buildings to experience torsional motions under earthquake excitation. In this study, SACM is used to improve the performance of asymmetric buildings, and unlike conventional linear models, the non-linear inertial coupling terms are considered in the equations of motion. SACM performance is compared with the Linear Quadratic Regulator (LQR) algorithm. Moreover, the LQR algorithm is modified, so that it is appropriate for rotationally non-linear buildings. Active tuned mass dampers are used to improve the performance of the modeled buildings. The results show that SACM is successful in reducing the response of asymmetric buildings with rotationally non-linear behavior under earthquake excitation. Furthermore, the results of the SACM were very close to those of the LQR algorithm.

Linear prediction and z-transform based CDF-mapping simulation algorithm of multivariate non-Gaussian fluctuating wind pressure

  • Jiang, Lei;Li, Chunxiang;Li, Jinhua
    • Wind and Structures
    • /
    • v.31 no.6
    • /
    • pp.549-560
    • /
    • 2020
  • Methods for stochastic simulation of non-Gaussian wind pressure have increasingly addressed the efficiency and accuracy contents to offer an accurate description of the extreme value estimation of the long-span and high-rise structures. This paper presents a linear prediction and z-transform (LPZ) based Cumulative distribution function (CDF) mapping algorithm for the simulation of multivariate non-Gaussian fluctuating wind pressure. The new algorithm generates realizations of non-Gaussian with prescribed marginal probability distribution function (PDF) and prescribed spectral density function (PSD). The inverse linear prediction and z-transform function (ILPZ) is deduced. LPZ is improved and applied to non-Gaussian wind pressure simulation for the first time. The new algorithm is demonstrated to be efficient, flexible, and more accurate in comparison with the FFT-based method and Hermite polynomial model method in two examples for transverse softening and longitudinal hardening non-Gaussian wind pressures.

Non-Linear Error Identifier Algorithm for Configuring Mobile Sensor Robot

  • Rajaram., P;Prakasam., P
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1201-1211
    • /
    • 2015
  • WSN acts as an effective tool for tracking the large scale environments. In such environment, the battery life of the sensor networks is limited due to collection of the data, usage of sensing, computation and communication. To resolve this, a mobile robot is presented to identify the data present in the partitioned sensor networks and passed onto the sink. In novel data collection algorithm, the performance of the data collecting operation is reduced because mobile robot can be used only within the limited range. To enhance the data collection in a changing environment, Non Linear Error Identifier (NLEI) algorithm has been developed and presented in this paper to configure the robot by means of error models which are non-linear. Experimental evaluation has been conducted to estimate the performance of the proposed NLEI and it has been observed that the proposed NLEI algorithm increases the error correction rate upto 42% and efficiency upto 60%.

Optimum design of geometrically non-linear steel frames using artificial bee colony algorithm

  • Degertekin, S.O.
    • Steel and Composite Structures
    • /
    • v.12 no.6
    • /
    • pp.505-522
    • /
    • 2012
  • An artificial bee colony (ABC) algorithm is developed for the optimum design of geometrically non-linear steel frames. The ABC is a new swarm intelligence method which simulates the intelligent foraging behaviour of honeybee swarm for solving the optimization problems. Minimum weight design of steel frames is aimed under the strength, displacement and size constraints. The geometric non-linearity of the frame members is taken into account in the optimum design algorithm. The performance of the ABC algorithm is tested on three steel frames taken from literature. The results obtained from the design examples demonstrate that the ABC algorithm could find better designs than other meta-heuristic optimization algorithms in shorter time.

Structural Optimization for Non-Linear Behavior Using Equivalent Static Loads (I) (선형 등가정하중을 이용한 비선형 거동 구조물의 최적설계 (I) - 알고리듬 -)

  • Park Ki-Jong;Park Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.8 s.239
    • /
    • pp.1051-1060
    • /
    • 2005
  • Nonlinear Response Optimization using Equivalent Static Loads (NROESL) method/algorithm is proposed to perform optimization of non-linear response structures. The conventional method spends most of the total design time on nonlinear analysis. The NROESL algorithm makes the equivalent static load cases for each response and repeatedly performs linear response optimization and uses them as multiple loading conditions. The equivalent static loads are defined as the loads in the linear analysis, which generates the same response field as those in non-linear analysis. The algorithm is validated for the convergence and the optimality. The proposed algorithm is applied to a simple mathematical problem to verify the convergence and the optimality.

Stable Tracking Control to a Non-linear Process Via Neural Network Model

  • Zhai, Yujia
    • Journal of the Korea Convergence Society
    • /
    • v.5 no.4
    • /
    • pp.163-169
    • /
    • 2014
  • A stable neural network control scheme for unknown non-linear systems is developed in this paper. While the control variable is optimised to minimize the performance index, convergence of the index is guaranteed asymptotically stable by a Lyapnov control law. The optimization is achieved using a gradient descent searching algorithm and is consequently slow. A fast convergence algorithm using an adaptive learning rate is employed to speed up the convergence. Application of the stable control to a single input single output (SISO) non-linear system is simulated. The satisfactory control performance is obtained.

Non-linear Structural Optimization Using NROESL (등가정하중을 이용한 구조최적설계 방법을 이용한 비선형 거동구조물의 최적설계)

  • 박기종;박경진
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1256-1261
    • /
    • 2004
  • Nonlinear Response Optimization using Equivalent Static Loads (NROESL) method/algorithm is proposed to perform optimization of non-linear response structures. It is more expensive to carry out nonlinear response optimization than linear response optimization. The conventional method spends most of the total design time on nonlinear analysis. Thus, the NROESL algorithm makes the equivalent static load cases for each response and repeatedly performs linear response optimization and uses them as multiple loading conditions. The equivalent static loads are defined as the loads in the linear analysis, which generates the same response field as those in non-linear analysis. The algorithm is validated for the convergence and the optimality. The function satisfies the descent condition at each cycle and the NROESL algorithm converges. It is mathematically validated that the solution of the algorithm satisfies the Karush-Kuhn-Tucker necessary condition of the original nonlinear response optimization problem. The NROESL algorithm is applied to two structural problems. Conventional optimization with sensitivity analysis using the finite difference method is also applied to the same examples. The results of the optimizations are compared. The proposed method is very efficient and derives good solutions.

  • PDF

A NEW APPROACH FOR NUMERICAL SOLUTION OF LINEAR AND NON-LINEAR SYSTEMS

  • ZEYBEK, HALIL;DOLAPCI, IHSAN TIMUCIN
    • Journal of applied mathematics & informatics
    • /
    • v.35 no.1_2
    • /
    • pp.165-180
    • /
    • 2017
  • In this study, Taylor matrix algorithm is designed for the approximate solution of linear and non-linear differential equation systems. The algorithm is essentially based on the expansion of the functions in differential equation systems to Taylor series and substituting the matrix forms of these expansions into the given equation systems. Using the Mathematica program, the matrix equations are solved and the unknown Taylor coefficients are found approximately. The presented numerical approach is discussed on samples from various linear and non-linear differential equation systems as well as stiff systems. The computational data are then compared with those of some earlier numerical or exact results. As a result, this comparison demonstrates that the proposed method is accurate and reliable.