• Title/Summary/Keyword: Non-$CO_2$

Search Result 2,602, Processing Time 0.053 seconds

Formation of the Diamond Thin Film as the SOD Sturcture (SOD 구조 형성에 따른 다이아몬드 박막 형성)

  • Ko, Jeong-Dae;Lee, You-Seong;Kang, Min-Sung;Lee, Kwang-Man;Lee, Kae-Myoung;Kim, Duk-Soo;Choi, Chi-Kyu
    • Korean Journal of Materials Research
    • /
    • v.8 no.11
    • /
    • pp.1067-1073
    • /
    • 1998
  • High quality diamond films of the silicon on diamond (SOD) structure are deposited using CO and $H_2$ gas mixture in microwave plasma chemical vapor deposition (CVD), a SOD structure is fabricated using low pressure CVD polysilicon on diamond/ Si(100) substrate. The crystalline structure of the diamond films which composed of { 111} and {100} planes. were changed from octahedral one to cubo-octahedron one as the CO/$H_2$ ratios are increased. The high quality diamond films without amorphous carbon and non-diamond elements were deposited at the CO/$H_2$ flow rate of 0.18. and the main phase of the diamond films shows (111) plane. The diamond/Si(lOO) structure shows that the interface is flat without voids. The measured dielectric constant. leakage current and breakdown field were $5.31\times10^{-9}A/cm^2$ and $9\times{10^7}{\Omega}cm$ respectively.

  • PDF

The experimental study on the compressive strength for cementitious material using CO2 curing (CO2 양생을 이용한 시멘트계 재료의 압축강도 발현에 관한 실험적 연구)

  • Sung, Myung-Jin;Ryu, Hwa-Sung;Shin, Sang-Heon;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.264-265
    • /
    • 2014
  • Currently, CO2 existed in the air usually reacts concrete, and then CaCO3 can be appeared. As time goes by, pH of concrete is decreased and corrosion of steel can be happened. This phenomenon is called carbonation. For preventing carbonation of concrete, various methods like using corrosion inhibitor, high compressive strength concrete, and enough covering depth are adopted. But these method are usually passive methods focused on corrosion of steel and have limitation on economic. Thus, as basic study for active method of carbonation, cement pastes with CO2 reactive material (γ-C2S, MgO) and GBFS were in accelerated carbonation, and the compressive strengths were measured. On the result, the compressive strength was improved better than non-carbonation. Through measuring the weight change using TG-DTA, as specimens were carbonated, according to decreasing of Ca(OH)2 and Mg(OH)2, CaCO3 and MgCO3 were increased. Therefore it can be shown that carbonation curing can be realized.

  • PDF

Effects of vessel-pipe coupled dynamics on the discharged CO2 behavior for CO2 sequestration

  • Bakti, Farid P.;Kim, Moo-Hyun
    • Ocean Systems Engineering
    • /
    • v.10 no.3
    • /
    • pp.317-332
    • /
    • 2020
  • This study examines the behaviors and properties of discharged liquid CO2 from a long elastic pipe moving with a vessel for the oceanic CO2 sequestration by considering pipe dynamics and vessel motions. The coupled vessel-pipe dynamic analysis for a typical configuration is done in the frequency and time domain using the ORCAFLEX program. The system's characteristics, such as vessel RAOs and pipe-axial-velocity transfer function, are identified by applying a broadband white noise wave spectrum to the vessel-pipe dynamic system. The frequency shift of the vessel's RAO due to the encounter-frequency effect is also investigated through the system identification method. Additionally, the time histories of the tip-of-pipe velocities, along with the corresponding discharged droplet size and Weber numbers, are generated for two different sea states. The comparison between the stiff non-oscillating pipe with the flexible oscillating pipe shows the effect of the vessel and pipe dynamics to the discharged CO2 droplet size and Weber number. The pipe's axial-mode resonance is the leading cause of the fluctuation of the discharged CO2 properties. The significant variation of the discharged CO2 properties observed in this study shows the importance of considering the vessel-pipe motions when designing oceanic CO2 sequestration strategy, including suitable sequestration locations, discharge rate, towing speed, and sea states.

Mobilization of Heavy Metals induced by Button Mushroom Compost in Sunflower

  • Han, Chang-Hoon;Yoon, Min-Ho
    • Journal of Mushroom
    • /
    • v.15 no.2
    • /
    • pp.61-68
    • /
    • 2017
  • This study focused on evaluating the phytoextraction of heavy metals (Co, Pb, and Zn) induced by bioaugmentation of button mushroom compost (BMC) in Helianthus annuus (sunflower). When the potential ability of BMC to solubilize heavy metals was assessed in a batch experiment, the inoculation with BMC could increase more the concentrations of water-soluble Co, Pb, and Cd by 35, 25, and 45% respectively, compared to those of non-inoculated soils. BMC-assisted growth promotion and metal uptake in H. annuus was also evaluated in a pot experiment. In comparison with non-inoculated seedlings, the inoculation led to an increase in the growth of H. annuus by 27, 25, and 28% in Co-, Pb-, and Zn-contaminated soils, respectively. Moreover, enhanced accumulation of Co, Pb, and Zn in the shoot and root systems was observed in inoculated plants, where metal the translocation from root to the above-ground tissues was also found to be enhanced by the BMC. Evidently, these results suggest that the BMC could be effectively employed in enhancing the phytoextraction of Co, Pb, and Zn from contaminated soils.

Effect of Non-lattice Oxygen Concentration and Micro-structure on Resistance Switching Characteristics in Nb-doped HfO2 by DC Magnetron Co-Sputtering

  • Lee, Gyu-Min;Kim, Jong-Gi;Kim, Yeong-Jae;Kim, Jong-Il;Son, Hyeon-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.378.1-378.1
    • /
    • 2014
  • In this study, we investigated that the resistance switching characteristics of Nb-doped HfO2 films with increasing Nb doping concentration. The Nb-doped HfO2 based ReRAM devices with a TiN/Nb-doped HfO2/Pt/Ti/SiO2 were fabricated on Si substrates. The Nb-doped HfO2 films were deposited by reactive dc magnetron co-sputtering at $300^{\circ}C$ and oxygen partial ratio of 60% (Ar: 16sccm, O2: 24sccm). Microstructure of Nb-doped HfO2 films and atomic concentration were investigated by XRD, TEM, and XPS, respectively. The Nb-doped HfO2 films showed set/reset resistance switching behavior at various Nb doping concentrations. The process voltage of forming/set is decreased and whereas the initial current level is increased in doped HfO2 films. However, the switching properties of Nb-doped HfO2 were changed above the specific doping concentration of Nb. The change of resistance switching behavior depending on doping concentration was discussed in terms of concentration of non-lattice oxygen and micro-structure of Nb-doped HfO2.

  • PDF

Effect of $CO_2$ Enrichment on Photosynthetic Rates, Enzyme Activitiy and End Products of two Poplar Clones, 1-214 (Populus euramericana) and Peace (P. koreana x P. trichocarpa)

  • Park Shin-Young;Furukawa Akio
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.1 no.1
    • /
    • pp.51-59
    • /
    • 1997
  • Two comparative poplar clones (I-214: Populus euramericana, Peace: P koreana x P. trichocarpa) were exposed to two $CO_2$ concentrations (350 or 2,000 ${\mu}L\;L^{-1}\;CO_2)$ for 21 days. When both poplar clones were compared at growth conditions, the net photosynthetic rate $(P_N)$ in $CO_2-enriched$ (2,000 ${\mu}L\;L^{-1}\;CO_2=C_{2,000})$ plants become about $50-60\%$ higher than that of 350 ${\mu}L\;L^{-1}\;CO_2(=C_{350})$ plants on 7 days treatment. But the enhancement of $P_N$ by high $CO_2$ was not maintained throughout all the experimental period. At 21 days, there was no difference of photosynthetic rates between $C_{350}\;and\;C_{2,000}$ plants. In contrast with photosynthesis, the response of leaf conductance to the elevated $CO_2$ concentration was very different between I-214 and Peace. During all experimental period, leaf conductance $(g_s)$ of $C_{2,000}$ plants is $50\%$ lower than that of the $C_{350}$ plants for I-214, while there is no difference of $g_s$ between the plants of $C_{350}\;and\;C_{2,000}$ on for Peace. The results of gs in Peace indicate that decreased photosynthetic rate after 21 days in $C_{2,000}$ on plants for two poplar clones is possibly due to non-stomatal factors. To investigate the non-stomatal factors, starch accumulation and ribulose-1,6-bisphosphate carboxylase (RuBPCase) were measured. We found significant accumulation of starch in two poplar clones exposed to high $CO_2,$ especially starch of I-214 in $C_{2,000}$ become 3.5 times higher than in $C_{350}$ plants at 21 days. This suggests that high proportion of photosynthates was directed into starch. After 21 days, the activity of ribulose-1, 6-bisphosphate carboxylase of $C_{2,000}$ plants become decreased in $40-50\%$ compared with that of the $C_{350}$ plants. Two poplar clones show the same trend to RuBPCase declines under high $CO_2$ concentration, although the decline is more significant for I-214. The results reported here suggest that starch accumulation and decreased RuBPCase activity in $C_{2,000}$ plants can be partly ascribed to the loss of photosynthetic efficiency of high $CO_2-grown$ poplar plants.

  • PDF

Thermal analysis model for electric water pumps with non-conductive cooling liquid (비전도성 충진액을 포함하는 전동워터펌프 열 해석 모델)

  • Jung, Sung-Taek;Yoon, Seon-Jhin;Ha, Seok-Jae
    • Design & Manufacturing
    • /
    • v.16 no.2
    • /
    • pp.46-52
    • /
    • 2022
  • As the consumer market in the eco-friendly vehicle industry grows, the demand for water pump in a electric car parts market. This study intend to propose a mathematical model that can verify the effect of improving thermal properties when a non-conductive cooling filler liquid is introduced into an electric vehicle water pump. Also, the pros and cons of the immersion cooling method and future development way were suggested by analyzing the cooling characteristics using on the derived analysis solution. Thermal characteristics analysis of electric water pump applied with non-conductive filler liquid was carried out, and the diffusion boundary condition in the motor body and the boundary condition the inside pump were expressed as a geometric model. As a result of analyzing the temperature change for the heat source of the natural convection method and the heat conduction method, the natural convection method has difficulty in dissipating heat because no decrease in temperature due to heat release was found even after 300 sec. Also, it can be seen that the heat dissipation effect was obtained even though the non-conductive filling liquid was applied at the 120 sec and 180 sec in the heat conduction method. It has proposed to minimize thermal embrittlement and lower motor torque by injecting a non-conductive filler liquid into the motor body and designing a partition wall thickness of 2.5 mm or less.

The warm CO gas along the UV-heated outflow walls: a possible interpretation for the Herschel-PACS CO spectra of embedded YSO

  • Lee, Seokho;Lee, Jeong-Eun;Bergin, Edwin A.;Park, Yong-Sun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.67.2-67.2
    • /
    • 2013
  • Part of mid-J CO emission detected by the Herschel/PACS observations of embedded young stellar objects (YSOs) has been attributed to the UV-heated outflow walls. We have applied our newly developed self-consistent models of Photon Dominated Region (PDR) and Non-LTE line Radiative transfer In general Grid (RIG) to the Herschel FIR CO observations. If the black body radiation of T = 15,000 K is used, the observed mid-J CO line fluxes can be produced in inner dense regions (n ${\geq}$ 106 cm-3) with -4.5 ${\leq}$ log Gdust/n ${\leq}$ -2.5, where gas temperatures are larger than 300 K and CO abundances are ${\geq}$ 10-5, along the UV-heated outflow walls. The contribution of the UV heated outflow cavity wall in Class I seems to be larger than that in Class 0.

  • PDF

Temperature Dependency of Non-dispersive Infrared Carbon Dioxide Gas Sensor by Using White-Cell Structure (White-Cell 구조를 응용한 비분산 적외선 이산화탄소 센서의 온도특성)

  • Yi, SeungHwan;Park, YoungHwan;Lee, JaeKyung
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.5
    • /
    • pp.377-381
    • /
    • 2016
  • NDIR $CO_2$ gas sensor was prototyped with ASIC implemented thermopile sensor which included temperature sensor and White-Cell structure in this paper. The temperature dependency of dual infrared sensors ($CO_2$ and reference IR sensors) has been characterized and their output voltage ratios according to the temperature and gas concentration were presented in this paper for achieving temperature compensation algorithm. The initial output voltages of NDIR $CO_2$ gas and reference IR sensors showed $3^{rd}$ order polynomial and linear output voltages according to the variation of ambient temperatures from 253 K to 333 K, respectively. The output voltages of temperature sensor presented a linear dependency according to the ambient temperature and could be described with V(T) = -3.0069+0.0145T(V). The characteristics of output voltage ratios could be modeled with five parameters which are dependent upon the ambient temperatures and gas concentration. The estimated $CO_2$ concentrations showed relatively high error below 300 ppm (maximum 572 % at 7 ppm $CO_2$ concentration), however, as the concentration increased from 500 ppm to 2,000 ppm, the overall estimated errors of $CO_2$ concentrations were less than ${\pm}10%$ in this research.