• Title/Summary/Keyword: Non destructive test

Search Result 475, Processing Time 0.034 seconds

The Study on Applicability of Semi-conductive Compound for Radioactive Source Tracing Dosimeter in NDT Field (비파괴 검사 분야의 방사성 동위원소 위치추적을 위한 반도체 화합물의 적용 가능성 연구)

  • Shin, Yohan;Han, Moojae;Jung, Jaehoon;Kim, Kyotae;Heo, Yeji;Lee, Deukhee;Cho, Heunglae;Park, Sungkwang
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.1
    • /
    • pp.39-44
    • /
    • 2019
  • Radiation safety management is being considered very important since radioactive isotopes such as Co-60 and Ir-192 are widely used in fields such as non-destructive test(NDT). In this study, the applicability of Mercury(II) Iodide($HgI_2$) source for tracing system was evaluated. To make sure the unit cell sensor's reliability, we evaluated the electrical properties of the sensor made with $HgI_2$, and then position dependence of the sensor was analyzed and compared with the dose distribution from the planning system. As a result of the evaluation, high reliability of the sensor was shown through the linearity of R-sq > 0.990 and reproducibility of CV < 0.015. In the position dependence evaluation, the maximum value was measured at the isocenter of the sensor and gradually decreased according to the distance. However, the dose distribution data from the planning system was turned out that has difference with that of the sensor up to 30%. This seems to come from the difference between single-point measuring based planning system and area measuring based sensor.

Comparative Evaluation of Concrete Compressive Strength According to the Type of Apartment Building Finishing Materials Using Nondestructive Testing (비파괴검사법을 이용한 공동주택 마감재 종류에 따른 콘크리트 압축강도 비교평가)

  • Seong-Uk Hong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.1
    • /
    • pp.32-38
    • /
    • 2024
  • In the case of apartment building, it is difficult to conduct non-destructive testing due to the actual presence of people and the dust and noise generated during the core test, so inspections are performed each time in the common area and underground parking lot, and the tests are conducted on the finishing material rather than on the concrete surface due to low-cost orders. As the process progresses, poor inspection is inevitable. In addition, the proposed formulas for strength estimation have large fluctuations depending on the differences in test conditions and environments, and even if they show the same measured value, the deviation between each proposed formula is large, making it difficult to accurately estimate strength, making it difficult to use. Accordingly, we would like to select finishing materials mainly used in apartment complexes and compare and evaluate the compressive strength of concrete according to the type of finishing material by using non-destructive testing methods directly on the finishing materials without removing the finishing materials. The reliability evaluation results of the estimated compressive strength of concrete using the ultrasonic velocity method according to the type of finishing material are as follows. The error rate between the estimated compressive strength and compressive strength derived through the ultrasonic velocity method shows a wide range of variation, ranging from 21.83% to 58.89%. The effect of the presence or absence of finishing materials on the estimated compressive strength was found to be insignificant. Accordingly, it is necessary to select more types of finishing materials and study ultrasonic velocity methods according to the presence or absence of finishing materials, and to study estimation techniques that can increase reliability.

Comparative Studies on Cotton Seed Germinability with Tetrazolium Viability Test and X-ray Contrast Methods

  • Na, Young-Wang;Shim, Sang-In;Chung, Jung-Sung;Rho, Il-Rae;Kim, Seok-Hyeon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.59 no.2
    • /
    • pp.188-193
    • /
    • 2014
  • Seed viability testing provides valuable information for assessing seed lot germinability. However, most testing methods require destruction of seed prior to test. Because the dissected seeds for viability test cannot be used further evaluation, the nondestructively X-ray photography technique that can be applied for the evaluation of seed quality has been developed. In order to know the validity and accuracy of X-ray photography technique in seed evaluation test that conducted to remove the abnormal seed from a seed lot, we have compared the results from tetrazolium viability test, germination test and X-ray contrast method in cotton. Metallic salts treatment increased the efficiency of X-ray photographic method by enhancing the penetration of X-ray in abnormal or damaged seeds rather than normal seeds that have strong and well-organized tissues in seed. Cotton seeds presoaked for 16 hr in distilled water followed by soaking into metallic salt solution (5% NaI in water) for 60 min were easily classified seeds into dead seed and viable seed based on the radiography images obtained by X-ray radiation. We concluded that soft X-ray photography was reliable to find out the various defective characters due to heat and mechanical damage of seeds.

The Importance of Filter Integrity Test to Ensure Sterility of Radiophamaceuticals for Using PET Image

  • Cho, Yong-Hyun;Park, Jun-Hyung;Hwang, Ki-Young;Kim, Hyung-Woo;Lee, Hong-Jae;Kim, Hyun-Ju
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.12 no.1
    • /
    • pp.74-77
    • /
    • 2008
  • The radiopharmaceuticals are routinely injected to blood vessel for acquiring PET image. For this reason, It is imperative that they undergo strict quality control measures. Especially, Sterility test is more important than any other quality control procedures. According to the FDA guideline, It requires filter integrity test used in the processing of sterile solutions. Among several methods, we can decide to use bubble point test. We usually use vented GS-filters (Millipore co., USA) which are sterilizinggrade (0.22 um pore size) and are placed upper site on product vial. After the synthesis of $^{18}F$-FDG, solutions wet the membrane in filter and then go into the product vial. By all synthesis steps have finished, we can observe the presence of the bubbles in the product vial. Since we have started this study, we have never found any bubbles in the product vial. Because the maximum pressure intensity of the filter which has set by manufacturer is up to 5 bars, but helium gas pressure is up to 1 bar in our module system. So, we can make 5 bars pressure using helium gas bombe and increase pressure up to 5 bars step by step. However, it does not happen to anything in vial.

  • PDF

Application of a Simple Non Destructive Test Method to Obtain the Dynamic Modulus of Asphalt Mixtures used for an Asphalt Trackbed Foundation (아스팔트 노반 설계를 위한 간이 비파괴시험에 의한 동탄성계수 취득방법 적합성 분석)

  • Lim, Yujin;Lee, SeongHyeok;Lee, JinWook;Lee, ByeongSik
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.2
    • /
    • pp.114-122
    • /
    • 2014
  • An asphalt trackbed is to be adapted in Korea to provide better bearing capacity and stability to the track and a comfortable ride to passengers. The dynamic modulus of Hot Mixed Asphalt(HMA) mixes is a critical design input parameter to determine the thickness of the asphalt trackbed. In this study, impact resonant tests and ultrasonic test methods are designed to obtain the dynamic modulus. These test methods are also verified to check the etffectiveness of constructing a master curve of the dynamic modulus over a wide range of frequencies and temperatures. The test results are compared to the computed dynamic modulus using AASHTO 2002 and the KPRP's proposed model. It can be concluded that the proposed simple test methods are effective to obtain the dynamic moduli of the asphalt mixes for the design of an asphalt trackbed foundation.

A comparison of destructive behaviors of distilled water, salty water, sulfuric acid and heat on glass/vinyl ester composites

  • Asli, S.A.;Shokrieh, M.M.;Kamangar, M.A.
    • Composite Materials and Engineering
    • /
    • v.3 no.3
    • /
    • pp.167-178
    • /
    • 2021
  • In the present paper, the destructive behavior of distilled water, salty water, sulfuric acid, and heat on glass/vinyl ester composites was investigated by experimental methods. Hetron 922 vinyl ester resin and two types of mat and woven glass fibers as the reinforcements were used to fabricate composite test samples. All samples were immersed in distilled water, salty water, and sulfuric acid with three different concentrations. The tests were performed at 20℃ and 70℃ for the exposure duration of 1, 2, 4, and 8 weeks. Bending tests were performed after aging for all composite samples to check the degradation of the bending modulus and strength. The results show that the effect of distilled water, in comparison with salty water, on the degradation of composite samples was significant. On the other hand, almost non-sensitivity of concentrations of salty water on the weight gain of specimens has been observed. In addition, it was also observed that the degradation of samples at 70℃ temperature is much more than that of at 20℃. Also, it was observed that the flexural modulus of virgin specimens exposed to salty water (2% concentration) has been recovered just after two weeks of immersion. Furthermore, in some cases, composite samples under the sulfuric acid solution have lost almost 80% of their mechanical properties.

The Study on the Optimal NDT Method for the Explosion Damage Analysis for One-way RC Slabs (일방향 철근 콘크리트 슬래브의 폭발 피해 분석을 위한 최적의 비파괴검사법에 관한 연구)

  • Lee, Seoung-Jae;Oh, Tae-Keun;Park, Jong-Yil;Kim, Hie Sik
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.5
    • /
    • pp.62-68
    • /
    • 2017
  • It is necessary to analyze on the compressive strength among material properties of concrete for confirming damages of architectures due to large explosion. A non destructive test is known as the representative methods estimating compressive strength and ultrasonic pulse velocity, rebound hardness test are widely used because of their simplicity, convenience. But combined method supplementing two types is applied at now as they are affected by the characteristics of test specimen. In this research to check damages on the members of structure before and after explosion, the characteristics of compressive strength are compared and analyzed through a real explosion test prior to full scale structures. The test results showed that the larger the TNT powder and the shorter the distance, the greater the decrease in strength before and after the explosion and that the largest displacement and moment for the explosive load and the greatest decrease in the strength at the central part. Due to the surface condition and the thickness variation of the concrete specimens, the standard deviation value is the smallest in the combining method of fusion of the ultrasonic method and rebound hardness method. Thus, the combining method can be one of appropriate methods to evaluate the strength in the reinforced concrete structures damaged by the explosion.

A Study for Evaluation of Hot Mixed Asphalt Mixtures with Tack-Coat Regarding High-Frequency Dynamic Resistance Performance and Bonding Property (택코트 첨가 가열아스팔트 혼합물의 고주파 동적저항 특성 및 접착성능 평가에 대한 연구)

  • Kim, Dowan;Mun, Sungho
    • International Journal of Highway Engineering
    • /
    • v.17 no.3
    • /
    • pp.35-47
    • /
    • 2015
  • PURPOSES : A tack coat has been utilized to increase the bond performance between the surface layer and base course (intermediate course) at various road pavement sites. This is similarly true in other nations. Based on this connection, the objective of the present study is to evaluate the properties of hot mix asphalt (HMA) mixtures with an RSC-4 or BD-Coat and determine the application rate of the tack coat. METHODS : The HMA specimens were manufactured using superpave gyratory compaction. The HMA mixtures were composed of a 5-cm thick surface layer and a 10-cm thick base course. An impact hammer resonance test (IHRT) and a static load shear test were conducted to evaluate the performance of the HMA mixtures with a tack coat. From these tests, the dynamic moduli related to the high-frequency resistance and interlayer shear strength (ISS) of HMA could be obtained. RESULTS : The results of the dynamic moduli of HMA are discussed based on the resonance frequency (RF). To check the accuracy of the IHRT, we conducted a coherence analysis. A direct shear test using the application of a static load test was carried out to evaluate the interlayer shear strength (ISS) of HMA. CONCLUSIONS : The maximum ISS was demonstrated at an RSC-4 application rate of 462 gsm, and the maximum dynamic modulus was demonstrated at an RSC-4 application rate of 306 gsm. By averaging the results of the ISS, the maximum ISS values were obtained when a BD-Coat application rate of 602 gsm was applied.

The reliability analysis of Acoustic Emission(AE) testing for crack detectivity by sensors and materials (AE(음향방출) 검사 시 센서 및 재료에 따른 균열 검출능에 대한 신뢰성 분석)

  • Nam, Jun-Young;Lee, Sang-Yun;Hwang, Woong-Gi;Lee, Bo-Young
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.419-423
    • /
    • 2011
  • Unlike other non-destructive inspection method, AE Structural defects that are likely to grow in the operation status can be detected, and the advantage of being due to the continuous monitoring of large structures has been widely used to evaluate the stability. AE sensor used to detect sound wave that occurs between 20kHz to 20MHz. and Sound wave result may vary depending on sensor's sensitivity. In this paper, Tensile test conducted on STS 304 and SS400, and tries to detect the crack signal. In tensile test, specimens were conducted using different sensor sensitivity to the same tensile test condition. The crack signal parameters divided into 4 types of communities by conducting cluster analysis. It was demonstrated that crack signal of two sensor is not different by statistical analysis of null hypotheses. Based on the results, waveform of this tension test is crack signal.

  • PDF

Non Destructive Technique for Steel Corrosion Detection Using Heat Induction and IR Thermography (열유도 장치와 적외선 열화상을 이용한 철근부식탐지 비파괴 평가기법)

  • Kwon, Seung Jun;Park, Sang Soon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.2
    • /
    • pp.40-48
    • /
    • 2012
  • Steel corrosion in concrete is a main cause of deterioration and early failure of concrete structures. A novel integration of electromagnetic heat induction and infrared (IR) thermography is proposed for nondestructive detection of steel corrosion in concrete, by taking advantage of the difference in thermal characteristics of corroded and non-corroded steel. This paper focuses on experimental investigation of the concept. An inductive heater is developed to remotely heat the embedded steel from concrete surface, which is integrated with an IR camera. Concrete samples with different cover depths are prepared. Each sample is embedded with a single rebar in the middle, resulting an identical cover depth from the front and the back surfaces, which enable heat induction from one surface and IR imaging from the other simultaneously. The impressed current (IC) method is adopted to induce accelerated corrosion on the rebar. IR video images are recorded during the entire heating and cooling periods. The test results demonstrate a clear difference in thermal characteristics between corroded and non-corroded samples. The corroded sample shows higher rates of heating and cooling than those of the non-corroded sample. This study demonstrates a potential for nondestructive detection of rebar corrosion in concrete.