• Title/Summary/Keyword: Non Linear Regression

Search Result 628, Processing Time 0.03 seconds

A study on the relationship between initial and final convergence in NATM tunnels (NATM 터널 굴착시 초기 내공변위와 최종 내공변위의 상관관계 연구)

  • Kim, Bum-Joo;Hwang, Young-Cheol
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.3
    • /
    • pp.233-243
    • /
    • 2008
  • A tunnel behavior predicted in the investigation and design stage is often different from its actual behavior due to mainly the complexity of ground conditions. In a tunnel construction, therefore, it is necessary to ensure the stability of the tunnel by predicting the behaviors of the ground and the supports through observations and measurements, and modifying immediately excavation and reinforcing methods when necessary. To do so, it is important to be able to predict the final tunnel behavior based on the initial tunnel behavior as early as possible. In this study, the correlations were obtained between the initial and the final convergence by analyzing statistically the convergence measurement data, collected from two domestic road tunnels under construction using NATM. In order to estimate the unknown displacements, occurred during the period between the excavation and the first measurement, two methods were used - one is the method by means of regression analysis using a modified exponential function and the other the method by a simple linear regression analysis using the data measured within the distance from tunnel face equal to the tunnel diameter (D). Finally, the relationships were obtained between the initial and final convergence, including the non-measured displacements estimated from the two different methods, by performing linear regression analyses. The regression analysis results showed that there are clear linear relationships between the initial and final convegence and the difference between the two linear regression equations was not that large for when using the exponential function and the simple linear function to estimate the non-measured displacements.

  • PDF

Study on the Estimation of Duncan & Chang Model Parameters-initial Tangent Modulus and Ultimate Deviator Stress for Compacted Weathered Soil (다짐 풍화토의 Duncan & Chang 모델 매개변수-초기접선계수와 극한축차응력 산정에 관한 연구)

  • Yoo, Kunsun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.12
    • /
    • pp.47-58
    • /
    • 2018
  • Duncan & Chang(1970) proposed the Duncan-Chang model that a linear relation of transformed stress-strain plots was reconstituted from a nonlinear relation of stress-strain curve of triaxial compression test using hyperbolic theory so as to estimate an initial tangent modulus and ultimate deviator stress for the soil specimen. Although the transformed stress-strain plots show a linear relationship theoretically, they actually show a nonlinearity at both low and high values of strain of the test. This phenomenon indicates that the stress-strain curve is not a complete form of a hyperbola. So, if linear regression analyses for the transformed stress-strain plot are performed over a full range of strain of a test, error in the estimation of their linear equations is unavoidable depending on ranges of strain with non-linearity. In order to reduce such an error, a modified regression analysis method is proposed in this study, in which linear regression analyses for transformed stress-strain plots are performed over the entire range of strain except the range the non-linearity is shown around starting and ending of the test, and then the initial tangent modulus and ultimate deviator stresses are calculated. Isotropically consolidated-drained triaxial compression tests were performed on compacted weathered soil with a modified Proctor density to obtain their model parameters. The modified regression analyses for transformed stress-strain plots were performed and analyzed results are compared with results estimated by 2 points method (Duncan et al., 1980). As a result of analyses, initial tangent moduli are about 4.0% higher and ultimate deviator stresses are about 2.9% lower than those values estimated by Duncan's 2 points method.

Generalized Linear Models for the Analysis of Data from the Quality-Improvement Experiments (일반화 선형모형을 통한 품질개선실험 자료분석)

  • Lee, Youngjo;Lim, Yong Bin
    • Journal of Korean Society for Quality Management
    • /
    • v.24 no.2
    • /
    • pp.128-141
    • /
    • 1996
  • The advent of the quality-improvement movement caused a great expansion in the use of statistically designed experiments in industry. The regression method is often used for the analysis of data from such experiments. However, the data for a quality characterstic often takes the form of counts or the ratio of counts, e.g. fraction of defectives. For such data the analysis using generalized linear models is preferred to that using the simple regression model. In this paper we introduce the generalized linear model and show how it can be used for the analysis of non-normal data from quality-improvement experiments.

  • PDF

FACTORS AFFECTING PRODUCTIVITY ON DAIRY FARMS IN TROPICAL AND SUB-TROPICAL ENVIRONMENTS

  • Kerr, D.V.;Davison, T.M.;Cowan, R.T.;Chaseling, J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.8 no.5
    • /
    • pp.505-513
    • /
    • 1995
  • The major factors affecting productivity on daily farms in Queensland, Australia, were determined using the stepwise linear regression approach. The data were obtained from a survey conducted on the total population of daily farms in Queensland in 1987. These data were divided into six major dailying regions. The technique was applied using 12 independent variables believed by a panel of experienced research and extension personnel to exert the most influence on milk production. The regression equations were all significant (p < 0.001) with the percentage coefficients of determination ranging from 62 to 76% for equations developed using' total farm milk: production as the dependent variable. Three of the variables affecting total farm milk: production were found to be common to all six regions. These were; the amount of supplementary energy fed, the area set aside to irrigate winter feed and the size of the area used for dailying. Higher production farms appeared to be more efficient in that they consistently produced milk production levels higher than those estimated from the regression equation for their region. Other methods of analysis including robust regression and non linear regression techniques were unsuccessful in overcoming this problem and allowing development of a model appropriate for farms at all levels of production.

A Causation Study for car crashes at Rural 4-legged Signalized Intersections Using Nonlinear Regression and Structural Equation Methods (비선형 회귀분석과 구조방정식을 이용한 지방부 4지 신호교차로의 사고요인분석)

  • Oh, Ju Taek;Kweon, Ihl;Hwang, Jeong Won
    • Journal of Korean Society of Transportation
    • /
    • v.31 no.1
    • /
    • pp.65-76
    • /
    • 2013
  • Traffic accidents at signalized intersections have been increased annually so that it is required to examine the causation to reduce the accidents. However, the current existing accident models were developed mainly by using non-linear regression models such as Poisson methods. These non-linear regression methods lack to reveal the complicated causation for traffic accidents, though they are the right choice to study randomness and non-linearity of accidents. Therefore, it is required to utilize another statistical method to make up for the lack of the non-linear regression methods. This study developed accident prediction models for 4 legged signalized intersections with Poisson methods and compared them with structural equation models. This study used structural equation methods to reveal the complicated causation of traffic accidents, because the structural equation method has merits to explain more causational factors for accidents than others.

Adsorption Kinetics of metals (Cu, Cd, Pb) in Tidal Flat Sediments and Yellow Loesses (갯벌과 황토에 의한 중금속 (Cu, Cd, Pb)의 흡착 kinetics)

  • YOU Sun-Jae;KIM Jong-Gu;KIM Jong-Bae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.33 no.3
    • /
    • pp.250-256
    • /
    • 2000
  • The purpose of this study was to investigate the adsorption kinetics of heavy metals (Cu, Cd and Pb) using three tidal flat sediments and two yellow loesses. The relationship between adsorption rate calculated by non-linear regression model and chemical parameters was estimated. The contents of ignitiot loss (I.L.) am Fe, Mn and Al oxides of yellow loess were higher $1.5{\~}6 times$ than those of tidal flat sediments. But the contents of silt and clay of tidal flat sediment in Eueunri was higher than others. Heavy metals adsorption were occured rapidly in the intial 30 min and the concentration of adsorbed heavy metals were $4.1{\~}14.7\;{\mu}g/g\;for\;Cu,\;2.8{\~}16.7\;{\mu}g/g\;for\;Cd\;and\;43.4{\~}101.7\;{\mu}g/g$ for Pb, showing a high cumulative adsorption of $8{\~}70{\%}\;for\;Cu,\;18{\~}31{\%}\;for\;Cd and\;19{\~}52{\%}$ for Pb after 3hr. In initial concentration of $0.5{\times}10^(-5)M$, adsorption rate of heavy metals by the tidal flat sediments and yellow loesses was the sequence Pb>Cu^gt;Cd. The adsorption kinetics of Cu, Cd and Pb was found to be one-site kinetic model. Especially, in the case of Cu, there was a high negative ($R^2= -0.88{\~}-0.99$) linear correlation between chemical parameter such as I.L., Al oxide, silt and clay, and adsorption rate coefficients ($K_a$) calculated by non-linear model.

  • PDF

Performance Evaluation of Attention-inattetion Classifiers using Non-linear Recurrence Pattern and Spectrum Analysis (비선형 반복 패턴과 스펙트럼 분석을 이용한 집중-비집중 분류기의 성능 평가)

  • Lee, Jee-Eun;Yoo, Sun-Kook;Lee, Byung-Chae
    • Science of Emotion and Sensibility
    • /
    • v.16 no.3
    • /
    • pp.409-416
    • /
    • 2013
  • Attention is one of important cognitive functions in human affecting on the selectional concentration of relevant events and ignorance of irrelevant events. The discrimination of attentional and inattentional status is the first step to manage human's attentional capability using computer assisted device. In this paper, we newly combine the non-linear recurrence pattern analysis and spectrum analysis to effectively extract features(total number of 13) from the electroencephalographic signal used in the input to classifiers. The performance of diverse types of attention-inattention classifiers, including supporting vector machine, back-propagation algorithm, linear discrimination, gradient decent, and logistic regression classifiers were evaluated. Among them, the support vector machine classifier shows the best performance with the classification accuracy of 81 %. The use of spectral band feature set alone(accuracy of 76 %) shows better performance than that of non-linear recurrence pattern feature set alone(accuracy of 67 %). The support vector machine classifier with hybrid combination of non-linear and spectral analysis can be used in later designing attention-related devices.

  • PDF

Large Robust Designs for Generalized Linear Model

  • Kim, Young-Il;Kahng, Myung-Wook
    • Journal of the Korean Data and Information Science Society
    • /
    • v.10 no.2
    • /
    • pp.289-298
    • /
    • 1999
  • We consider a minimax approach to make a design robust to many types or uncertainty arising in reality when dealing with non-normal linear models. We try to build a design to protect against the worst case, i.e. to improve the "efficiency" of the worst situation that can happen. In this paper, we especially deal with the generalized linear model. It is a known fact that the generalized linear model is a universal approach, an extension of the normal linear regression model to cover other distributions. Therefore, the optimal design for the generalized linear model has very similar properties as the normal linear model except that it has some special characteristics. Uncertainties regarding the unknown parameters, link function, and the model structure are discussed. We show that the suggested approach is proven to be highly efficient and useful in practice. In the meantime, a computer algorithm is discussed and a conclusion follows.

  • PDF

Curve Estimation among Citation and Centrality Measures in Article-level Citation Networks (문헌 단위 인용 네트워크 내 인용과 중심성 지수 간 관계 추정에 관한 연구)

  • Yu, So-Young
    • Journal of the Korean Society for information Management
    • /
    • v.29 no.2
    • /
    • pp.193-204
    • /
    • 2012
  • The characteristics of citation and centrality measures in citation networks can be identified using multiple linear regression analyses. In this study, we examine the relationships between bibliometric indices and centrality measures in an article-level co-citation network to determine whether the linear model is the best fitting model and to suggest the necessity of data transformation in the analysis. 703 highly cited articles in Physics published in 2004 were sampled, and four indicators were developed as variables in this study: citation counts, degree centrality, closeness centrality, and betweenness centrality in the co-citation network. As a result, the relationship pattern between citation counts and degree centrality in a co-citation network fits a non-linear rather than linear model. Also, the relationship between degree and closeness centrality measures, or that between degree and betweenness centrality measures, can be better explained by non-linear models than by a linear model. It may be controversial, however, to choose non-linear models as the best-fitting for the relationship between closeness and betweenness centrality measures, as this result implies that data transformation may be a necessary step for inferential statistics.

Improvement of Rating Curve Fitting Considering Variance Function with Pseudo-likelihood Estimation (의사우도추정법에 의한 분산함수를 고려한 수위-유량 관계 곡선 산정법 개선)

  • Lee, Woo-Seok;Kim, Sang-Ug;Chung, Eun-Sung;Lee, Kil-Seong
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.8
    • /
    • pp.807-823
    • /
    • 2008
  • This paper presents a technique for estimating discharge rating curve parameters. In typical practical applications, the original non-linear rating curve is transformed into a simple linear regression model by log-transforming the measurement without examining the effect of log transformation. The model of pseudo-likelihood estimation is developed in this study to deal with heteroscedasticity of residuals in the original non-linear model. The parameters of rating curves and variance functions of errors are simultaneously estimated by the pseudo-likelihood estimation(P-LE) method. Simulated annealing, a global optimization technique, is adapted to minimize the log likelihood of the weighted residuals. The P-LE model was then applied to a hypothetical site where stage-discharge data were generated by incorporating various errors. Results of the P-LE model show reduced error values and narrower confidence intervals than those of the common log-transform linear least squares(LT-LR) model. Also, the limit of water levels for segmentation of discharge rating curve is estimated in the process of P-LE using the Heaviside function. Finally, model performance of the conventional log-transformed linear regression and the developed model, P-LE are computed and compared. After statistical simulation, the developed method is then applied to the real data sets from 5 gauge stations in the Geum River basin. It can be suggested that this developed strategy is applied to real sites to successfully determine weights taking into account error distributions from the observed discharge data.