• 제목/요약/키워드: Non Linear Model

검색결과 2,046건 처리시간 0.029초

Quasi-Optimal Linear Recursive DOA Tracking of Moving Acoustic Source for Cognitive Robot Auditory System (인지로봇 청각시스템을 위한 의사최적 이동음원 도래각 추적 필터)

  • Han, Seul-Ki;Ra, Won-Sang;Whang, Ick-Ho;Park, Jin-Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • 제17권3호
    • /
    • pp.211-217
    • /
    • 2011
  • This paper proposes a quasi-optimal linear DOA (Direction-of-Arrival) estimator which is necessary for the development of a real-time robot auditory system tracking moving acoustic source. It is well known that the use of conventional nonlinear filtering schemes may result in the severe performance degradation of DOA estimation and not be preferable for real-time implementation. These are mainly due to the inherent nonlinearity of the acoustic signal model used for DOA estimation. This motivates us to consider a new uncertain linear acoustic signal model based on the linear prediction relation of a noisy sinusoid. Using the suggested measurement model, it is shown that the resultant DOA estimation problem is cast into the NCRKF (Non-Conservative Robust Kalman Filtering) problem [12]. NCRKF-based DOA estimator provides reliable DOA estimates of a fast moving acoustic source in spite of using the noise-corrupted measurement matrix in the filter recursion and, as well, it is suitable for real-time implementation because of its linear recursive filter structure. The computational efficiency and DOA estimation performance of the proposed method are evaluated through the computer simulations.

Non-linear Adaptive Attitude Controller Design of Quadrotor UAV (쿼드로터 무인기 비선형 적응 자세제어기 설계)

  • Choi, In-Ho;Park, Mu-Hyuk;Kim, Hyun-Gi
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • 제13권6호
    • /
    • pp.2421-2427
    • /
    • 2012
  • This paper is discussed the design on non-linear adaptive attitude controller for quadrotor UAV. Quadrotor UAV featured to have four rotor, required the special controller to compensate for the model parameter uncertainties as the unstable nonlinear system. In this research, we designed the adaptive controller to compensate for the payload changes even though it is changed with industrial applications. Especially, based on the mathematical model of UAV, non-linear adaptive controller is suggested and the stability is verified using the Lyapunov function and finally proved its performance and effectiveness of update laws with various payload by simulation.

Development of Analysis System for Asphalt Pavement Structures under Various Vehicle Speeds (차량 주행속도를 고려한 아스팔트 포장구조체의 해석시스템 구축)

  • Kim, Soo-Il;Seo, Joo-Won;Yoo, Young-Gyu;Choi, Jun-Sung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 한국지반공학회 2006년도 춘계 학술발표회 논문집
    • /
    • pp.552-561
    • /
    • 2006
  • The purpose of this study is to propose a pavement analysis system which considers dynamic effects resulted from the various vehicle speeds. Vehicle loading effects were estimated by loading frequency and dynamic loads under various vehicle speeds. In addition, a proposed analysis model takes the non-linear temperature using a predictive model for dynamic modulus in asphalt layer and the non-linear stress in the unbound material. To examine adequacy of existing multi-layer elastic analysis of non-linear temperature in asphalt layer and non-linear stress conditions in unbound material, this study divided layers of asphalt pavement structures with 10 layers in asphalt, 2 layers in subbase and 1 layer in subgrade. In order to verify the pavement analysis system that considers various speeds, deflections of pavement calculated using ABAQUS, a three dimensional finite element program, were compared with the results of field tests under various speeds.

  • PDF

FUZZY REGRESSION MODEL WITH MONOTONIC RESPONSE FUNCTION

  • Choi, Seung Hoe;Jung, Hye-Young;Lee, Woo-Joo;Yoon, Jin Hee
    • Communications of the Korean Mathematical Society
    • /
    • 제33권3호
    • /
    • pp.973-983
    • /
    • 2018
  • Fuzzy linear regression model has been widely studied with many successful applications but there have been only a few studies on the fuzzy regression model with monotonic response function as a generalization of the linear response function. In this paper, we propose the fuzzy regression model with the monotonic response function and the algorithm to construct the proposed model by using ${\alpha}-level$ set of fuzzy number and the resolution identity theorem. To estimate parameters of the proposed model, the least squares (LS) method and the least absolute deviation (LAD) method have been used in this paper. In addition, to evaluate the performance of the proposed model, two performance measures of goodness of fit are introduced. The numerical examples indicate that the fuzzy regression model with the monotonic response function is preferable to the fuzzy linear regression model when the fuzzy data represent the non-linear pattern.

A Continuous Robust Control Strategy for the Active Aeroelastic Vibration Suppression of Supersonic Lifting Surfaces

  • Zhang, K.;Wang, Z.;Behal, A.;Marzocca, P.
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제13권2호
    • /
    • pp.210-220
    • /
    • 2012
  • The model-free control of aeroelastic vibrations of a non-linear 2-D wing-flap system operating in supersonic flight speed regimes is discussed in this paper. A novel continuous robust controller design yields asymptotically stable vibration suppression in both the pitching and plunging degrees of freedom using the flap deflection as a control input. The controller also ensures that all system states remain bounded at all times during closed-loop operation. A Lyapunov method is used to obtain the global asymptotic stability result. The unsteady aerodynamic load is considered by resourcing to the non-linear Piston Theory Aerodynamics (PTA) modified to account for the effect of the flap deflection. Simulation results demonstrate the performance of the robust control strategy in suppressing dynamic aeroelastic instabilities, such as non-linear flutter and limit cycle oscillations.

A Study on Non-linear Behavior in Welded Structures by Mechanical Stress Release Method (기계적 응력 완화법에 의한 용접구조물의 비선형 거동에 관한 연구)

  • 김정현;장경복;윤훈성;강성수;조상명
    • Journal of Welding and Joining
    • /
    • 제21권1호
    • /
    • pp.66-71
    • /
    • 2003
  • The release of residual stress by mechanical loading and unloading is often performed in the fabrication of box structure fur steel bridge. The proper degree of loading and unloading is significant at release method of residual stress by mechanical loading because that degree is changed by material and geometric shape of welded structure. Therefore, the simulation model that could exactly analyze the release of residual stress by mechanical loading is to be necessary. In this study, the non-linear behavior of weldments under external loading and unloading, such as the decrease and increase of structure stiffness, was investigated by monitoring of nominal stress and strain. Tensile loading and unloading test and the proper degree of stress relaxation was measured by sectioning technique using strain gauge. Analysis model that is indispensable for the effective application of MSR method was established on the basis of test and measurement result.

A Study on the Optimization Method of Building Envelope using Non-linear Programming (비선형계획법을 이용한 건물의 외피최적화 방법)

  • Won, Jong-Seo;Lee, Kyung-Hoi
    • KIEAE Journal
    • /
    • 제3권2호
    • /
    • pp.17-24
    • /
    • 2003
  • The purpose of this study is to present rational methods of multi-criteria optimization of the envelope of buildings. The object is to determine the optimum R-value of the envelope of a building, based on the following criteria: minimum building costs (including the cost of materials and construction) and yearly heating costs. Mathematical model described heat losses and gains in a building during the heating season. It takes into consideration heat losses through wall, roof, floor and windows. Particular attention was paid to have a more detailed description of heat gains due to solar radiation. On the assumption that shape of building is rectangle in order to solve the problem, optimum R-value of the envelope of a building is determined by using non-linear programing methods(Kuhn-Tucker Conditions). The results constitute information for designers on the optimum R-value of a building envelope for energy saving buildings.

On statistical Computing via EM Algorithm in Logistic Linear Models Involving Non-ignorable Missing data

  • Jun, Yu-Na;Qian, Guoqi;Park, Jeong-Soo
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 한국통계학회 2005년도 추계 학술발표회 논문집
    • /
    • pp.181-186
    • /
    • 2005
  • Many data sets obtained from surveys or medical trials often include missing observations. When these data sets are analyzed, it is general to use only complete cases. However, it is possible to have big biases or involve inefficiency. In this paper, we consider a method for estimating parameters in logistic linear models involving non-ignorable missing data mechanism. A binomial response and normal exploratory model for the missing data are used. We fit the model using the EM algorithm. The E-step is derived by Metropolis-hastings algorithm to generate a sample for missing data and Monte-carlo technique, and the M-step is by Newton-Raphson to maximize likelihood function. Asymptotic variances of the MLE's are derived and the standard error and estimates of parameters are compared.

  • PDF

A Study on the Non-linear Analysis of Steel Frame with Semi-rigid Connections (반강접성을 고려한 강뼈대 구조물의 비선형 해석에 관한 연구)

  • 이종석;이상엽;김정훈
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 한국전산구조공학회 1997년도 가을 학술발표회 논문집
    • /
    • pp.111-118
    • /
    • 1997
  • Generally, H-section is used for columns and beams in the middle and low building steel structure, But it has a axis and a weak axis. Thus if H-section is used for columns, the structure needs reinforcement on the weak axis. Therefore recently, square hollow section(S.H.S) is used for columns because it is able to cover the vulnerability of H-section. Structural analysis is usually executed under the assumption that connections are either ideally pinned joint or fully joint. Actually all connections are semi-rigid which possess a rotational stiffness. Therefore it can be designed economically as using the property of connections which has a rotational stiffness. This paper presents a prediction model curve which is fitted with Kishi-Chen Power Model about the behavior of connection between H-beam and S.H.S column in the previous experimental paper. It also suggests the new analysis algorithm considering the non-linear of semi-rigid connection and the geometrical non-linear under the effect of axial force.

  • PDF

Failure Prediction of Multilayer Ceramic Capacitors (MLCCs) under Temperature-Humidity-Bias Testing Conditions Using Non-Linear Modeling (비선형모델링을 통한 온습도 바이어스 시험 중의 다층 세라믹축전기 수명 예측)

  • Kwon, Daeil;Azarian, Michael H.;Pecht, Michael
    • Journal of the Microelectronics and Packaging Society
    • /
    • 제20권3호
    • /
    • pp.7-10
    • /
    • 2013
  • This study presents an approach to predict insulation resistance failure of multilayer ceramic capacitors (MLCCs) using non-linear modeling. A capacitance aging model created by non-linear modeling allowed for the prediction of insulation resistance failure. The MLCC data tested under temperature-humidity-bias testing conditions showed that a change in capacitance, when measured against a capacitance aging model, was able to provide a prediction of insulation resistance failure.