• Title/Summary/Keyword: Non Electric Detonator

Search Result 17, Processing Time 0.018 seconds

A Case Study on Explosive Demolition of Gunsan Steam Power Station in Republic of Korea (군산화력발전소 발파해체 실용화 시험시공 사례)

  • Min, Hyung-Dong;Song, Young-Suk;Kim, Hyo-Jin;Seo, Young-Soo
    • Explosives and Blasting
    • /
    • v.25 no.2
    • /
    • pp.11-21
    • /
    • 2007
  • The main structure of Gunsan steam power station was demolished by the toppling method using high explosives. Height of a main building is 58m and a total floor area is $292,000m^2$. It is Rahmen(rigid-frame) structure consisted of almost columns and beams and slabs exist only in one part of the building for the electricity generators equipments. To improve the efficiency of blasting work, it is separated into 4 sectors. Blasting floors were 1, 2, 3, & 4 stories from first sector to third sector, while 1, 2, 5, & 7 of fourth sector were blasted because it had not slabs. About 102.675 kg of the MegaMITE were used with 225 electric detonator and 638 non-electric detonators to check detonator connection and confidence of detonation. The blasting noise and vibration were monitored to evaluate the environment effect and the damage of the nearby structures.

A Case Study of the Underwater Blasting Using Emulsion Explosives (에멀젼폭약을 사용한 수중발파 사례)

  • An, Bong-Do;Lee, Ik-Joo;Heo, The-Moon
    • Explosives and Blasting
    • /
    • v.25 no.2
    • /
    • pp.71-78
    • /
    • 2007
  • In many cases of underwater blasting in South Korea, the special blasting is mainly used for deepening harbor, installing gas pipes, or well blasting to build a bridge. The procedure of well blasting is almost same with shaft blasting, but the difference is that water is filled in before blasting. In case of deepening blasting under water, the first step like drilling, arranging explosives, and wire connection is done on a barge, then the next step such as charging and tamping is accomplished under water by expert divers. Therefore, underwater blasting needs precise and exact plan before blasting. In this paper, authors would like to introduce a case of underwater blasting for deepening the Busan new port with emulsion explosives and non-electric detonators in order to get some of 8,500TEU out sized container vessels entered into the port and to make safe. Considering environment and vibration, the blasting was controlled to minimized the damage to the lighthouse nearby. It will be great help to many other blasting sites where emulsion explosives and non-electric detonators are used for underwater blasting through this case.

Underwater Blasting for Removing Todo Island in the Sea of Pusan Newport by Using Bulk Emulsion Explosives and Non-electric Detonators (벌크 에멀젼 폭약과 비전기뇌관을 이용한 부산신항 토도 제거 수중발파)

  • An, Bong-Do;Kim, Gab-Soo;Lee, Soo-Hyung;Jung, Byung-Youl;Lim, Dae-Kyu
    • Explosives and Blasting
    • /
    • v.38 no.4
    • /
    • pp.37-45
    • /
    • 2020
  • Todo was an uninhabited island located in the sea of Pusan Newport. It was a small island with the height of 32 m above sea level, and its area including the submerged part was approximately 24,400 ㎡. Unfortunately, the island was located exactly in the middle of the narrow entrance way to the North and South Container Wharfs of Pusan Newport so that a number of ships had to turn quickly to avoid collision with the island, which frequently caused collisions with other ships or cranes. To avoid such a danger and make the water way wider and deeper, the Ministry of Oceans and Fisheries decided to remove the island. This was believed to make even super-large vessels operate safely in the sea of Pusan Newport so that the competitiveness of the port could be highly enhanced. This paper describes in detail the whole process of the removing work, which was the first case of successful underwater blasting operation using bulk emulsion explosives and non-electric detonators to remove a whole island in South Korea.

A Case Study on the Application of HiTRONIC-II Electronic Detonators to Overseas Site (HiTRONIC-II 전자뇌관 해외현장 적용 기술사례)

  • Lee, Dong-Hee;Jeong, Min-Su;Hwang, Nam-sun;Kim, Tae-hyun
    • Explosives and Blasting
    • /
    • v.37 no.3
    • /
    • pp.34-42
    • /
    • 2019
  • An electronic initiation system that can support various types of field blasting works has been developed and put into practice. The newly developed equipment called Hanwha Electronic Blasting System (HEBS) II has three basic operation modes of scanning, logging, and tagging, among which the blaster can choose the most suitable one for the specific site conditions. In the present study, the work efficiency of the system in the scanning, logging and tagging modes was compared with that of the previous non-electric detonator. The results were estimated based on the aspects of the ground vibration, fragmentation, and digging time. It was found that the ground vibration, fragmentation, and digging time of the new system were decreased by about 45%, 31%, and 13%, respectively, with respect to the previous system. This result confirms that the new system is very efficient in the scanning, logging and tagging modes under the field conditions.

A Case Study About Applying Electronic Detonator on Downtown Tunnel Construction Area (도심지 터널에 대한 전자뇌관 적용 시공 사례)

  • Hwang, Nam-Sun;Heo, Eui-Haeng;Kim, Kyung-Hyun;Kim, Jeoung-Hwan;Seong, Yoo-Hyeon;Kim, Nam-Su
    • Explosives and Blasting
    • /
    • v.40 no.1
    • /
    • pp.29-38
    • /
    • 2022
  • Electronic detonators are now widely used in various construction sites and quarry mines. Including the sites where safety-thing is located nearby, Cases of using electronic detonators are increasing to maximize operational efficiency by improving blast fragmentation or reducing the cost of secondary blasting. This case study is about applying for electronic detonators on zone 00 construction site, which is the part of urban area metropolitan express rail A line project. Although the project was initially planned to utilize non-electric detonators, Electronic detonators are considered as the solution not only for safe and fast excavation, but also to minimize civil complaint and the damage of safety-thing. By applying electronic detonators, we were able to satisfy environmental regulations standards and prevent nearby safety-thing from getting damaged.

Considerations on the Safety of Electric Caps Based on Measured Electrical Resistivity of Rock Samples (암석의 전기비저항 측정을 통한 전기뇌관의 사용 안전성 검토)

  • Choi, Byung-Hee;Ryu, Chang-Ha;Shin, Seung-Wook;Kim, Soo-Lo
    • Explosives and Blasting
    • /
    • v.34 no.4
    • /
    • pp.19-27
    • /
    • 2016
  • Much care should be taken when electric caps are used in blast site than when non-electric initiation systems are used. This is because electric caps can cause premature firing or misfires if stray currents of high magnitude flow into the blasting circuit. If the rock has higher electrical conductivity or lower electrical resistivity, such risks will be increased because the rock will provide more passages for the stray currents to flow into the blasting circuit. In this study, several rock samples obtained at a blast site were tested for electrical resistivity to decide whether electric caps could be used or not in the site. The measured electrical resistivity was $39{\sim}47{\Omega}{\cdot}m$ for the rock samples that had a higher content of metal sulfides. Contrary, the resistivity was $15000{\sim}21000{\Omega}{\cdot}m$ for ordinary rocks. Especially, in the case of the rock of electric resistivity of $39{\Omega}{\cdot}m$, only 2-V electric potential enables a stray current to flow through the rock of 1-m length, which can cause the premature firing of a detonator whose initiation current is 0.4 A. This result shows that electric initiation system should not be used in the site because rocks containing much amount of metal sulfides are widely distributed there.

A Case Study of Underwater Blasting (수중발파 사례 연구)

  • 정민수;박종호;송영석
    • Explosives and Blasting
    • /
    • v.22 no.3
    • /
    • pp.57-64
    • /
    • 2004
  • There are two major types of underwater blasting at Korea, bridges and harbor construction work. Pier blasting for lay the foundation bridges construction is used dry excavation working (drilling and charging) after pump out water and then fire pump in water that is same as bench blasting. In contrast, underwater blasting for harbor construction and increase of harbor load depth is used to barge with digging equipment that is in oder to drilling on the surface and blasting work(charge, hook-up) under water. Thus, there are need to special concern such as charge method and hook-up method different from tunnel blasting work and bench blasting work. If do not use special concern breaks out dead pressure and mis fire because of there are so many difficult condition such as water pressure, obstruct field of vision. In this study underwater blasting at Busan Harbor Construction have consider with special concern that is plastic pipe charge method used to MegaMITE I and specialized buoy hook- up method make far initial system detonate on the surface used to TLD. The results is designed blast pattern charge per delay effect an inspection of verify between predict velocity and measure velocity. minimized break out mis fire consideration charge method, hook up method. According to result best underwater blasting design is 105mm drilling dia, MeGAMITE II, HiNLL Plus(non electric detonator).