• 제목/요약/키워드: Nominal System Trajectory

검색결과 38건 처리시간 0.078초

교통신호제어기 실시간 감시를 위한 시뮬레이션 모델 구축 (Simulation Model Construction for Real-Time Monitoring of Traffic Signal Controller)

  • 김은영;장대순;장중순;박상철
    • 대한설비관리학회지
    • /
    • 제23권4호
    • /
    • pp.21-27
    • /
    • 2018
  • This paper proposed the real-time monitoring methodology of a traffic signal controller. The proposed methodology is based on the simulation technology, and it is necessary to construct a simulation model imitating the behavior of a traffic signal controller. By executing the simulation model, we can obtain the 'nominal system trajectory' of the traffic signal controller. On the other hand, an IoT(Internet of Things)-based monitoring device is implemented in a traffic signal controller. Through the monitoring device, it is possible to obtain the 'actual system trajectory'. By comparing the nominal system trajectory and the actual system trajectory, we can estimate the degree of deterioration of a traffic signal controller.

Inversion-Based Robust Output Tracking of Differentially Flat Nonlinear Systems

  • Joo, Jin-Man;Park, in-Bae;Park, Yoon-Ho
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제3권1호
    • /
    • pp.21-26
    • /
    • 2001
  • In this study, we propose a two degree of freedom robust output tracking control method for a class of nonlinear system. We consider hyperbolically nonminimum phase single-input single-output uncertain nonlinear systems. We also consider the case that the nominal input-state equation is differentially flat. Nominal stable state trajectory is obtained in the flat output space via the flat output. Nominal feedforward control input is also computed from the nominal state trajectory. Due to the nature of the method, the generated flat output trajectory and control input are noncausal. Robust feedback control is designed to stabilize the systems around the nominal trajectory. A numerical example is given is given to demonstrate that robust tracking is achieved.

  • PDF

실시간 감시를 통한 교통신호제어기의 열화 감지 (Detection of Deterioration of Traffic Signal Controller Through Real-Time Monitoring)

  • 김은영;장중순;오봉식;박상철
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제18권2호
    • /
    • pp.153-160
    • /
    • 2018
  • Purpose: A traffic signal controller needs to control and coordinate to ensure that traffic and pedestrians move as smoothly as possible. Since a traffic signal controller has a significant impact on the safety of vehicles and pedestrians, it is important to monitor the failure and deterioration of the traffic signal controller. The purpose of this paper is to propose an IoT (Internet of Things)-based monitoring system for a traffic signal controller. Methods: Every traffic signal controller has a nominal system trajectory specified when it is deployed. The proposed IoT-based monitoring system collects the system trajectory information through real-time monitoring. By comparing the nominal system trajectory and the monitored system trajectory, we are able to detect the failure and deterioration of the traffic signal controller. Conclusion: The proposed IoT-based monitoring system can contribute to the safety of vehicles and pedestrians by maximizing the availability of a traffic signal controller.

이산 비선형 시스템에 대한 유한 임펄스 응답 고정 시간 지연 평활기 (A Finite Impulse Response Fixed-lag Smoother for Discrete-time Nonlinear Systems)

  • 권보규;한세경;한수희
    • 제어로봇시스템학회논문지
    • /
    • 제21권9호
    • /
    • pp.807-810
    • /
    • 2015
  • In this paper, a finite impulse response(FIR) fixed-lag smoother is proposed for discrete-time nonlinear systems. If the actual state trajectory is sufficiently close to the nominal state trajectory, the nonlinear system model can be divided into two parts: The error-state model and the nominal model. The error state can be estimated by adapting the optimal time-varying FIR smoother to the error-state model, and the nominal state can be obtained directly from the nominal trajectory model. Moreover, in order to obtain more robust estimates, the linearization errors are considered as a linear function of the estimation errors. Since the proposed estimator has an FIR structure, the proposed smoother can be expected to have better estimation performance than the IIR-structured estimators in terms of robustness and fast convergence. Additionally the proposed method can give a more general solution than the optimal FIR filtering approach, since the optimal FIR smoother is reduced to the optimal FIR filter by setting the fixed-lag size as zero. To illustrate the performance of the proposed method, simulation results are presented by comparing the method with an optimal FIR filtering approach and linearized Kalman filter.

Force control of a structurally flexible robotic manipulator

  • 최병오
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1992년도 춘계학술대회 논문집
    • /
    • pp.369-373
    • /
    • 1992
  • Force control of a planar two-link structurally flexible robotic manipulator is considered in this study. The dynamic model is obtained by using the extended Hamilton's principle and the Galerkin criterion. A method is pressented toobtain the linearized equations of motion in Cartesian space for use in designing the control system. The approachto solving the control problem is to use feedforward and feedback control torques. The feedforward torques maneuver the flexible manipulatro along a nominal trajectory and the feedback torques minimize any deviations from the nominal trajectory. The linear quadratic Gaussian/loop transfer recovery (LQG/LTR) design methodology is explotied to design a robust feedback control system that can handle modeling errors and sensor noise, and operates on Cartesian space trajectory errors. The Lqg/LTR compenstaor together with a feedforward ollp is used to control the flexible manipulator. Simulated results are presented for a numerical example.

DTW와 Kalman Filter를 결합한 비행표적의 광학추적 방법 (The Optical Tracking Method of Flight Target using Kalman Filter with DTW)

  • 장석원
    • 한국항행학회논문지
    • /
    • 제25권3호
    • /
    • pp.217-222
    • /
    • 2021
  • EOTS(electro-optical tracking system)는 유도무기의 성능 평가를 위해 유도무기를 추적하여 영상을 획득하는데 활용되고 있다. 유도무기에 대한 추적을 잃어버렸을 경우 유도무기가 매우 빠르게 비행하기 때문에 운용자가 이를 다시 포착하는 것은 거의 불가능하다. 레이더나 텔레메트리 데이터를 활용하여 재 포착 하는 방법이 활용되고 있으나 데이터를 실시간으로 수신할 수 있는 통신망의 설치가 수반되어야하기 때문에 장소에 대한 제약이 따른다. 하지만 유도무기 비행시험 수행 시 계산되는 예상 궤적은 실시간으로 수신할 필요 없이 저장해두었다가 사용할 수 있기 때문에 통신망 설비와 관계없이 활용이 가능하다. 본 논문에서는 미리 알고 있는 비행체의 예상 궤적을 활용하여 비행체를 잃어버렸을 시 비행체의 위치를 예상하는 방법을 제안한다. DTW (dynamic time warping)를 통해 예상궤적과 추적궤적을 비교하여 비행체의 각속도를 추정하고 이를 Kalman Filter의 보정단계에서 관측 값으로 활용하여 비행체의 다음 상태를 예측한다. 제안한 방법의 타당성을 실제 비행체 궤적에 적용하여 검증하였다.

자동 미끄럼 이동 로봇의 경로 추종을 위한 LMI 최적 제어 기법 (A Linear Matrix Inequality Optima Control for the Tracking of an Autonomous Gliding Vehicle)

  • 이진우
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.335-335
    • /
    • 2000
  • Applications such as unmanned aerial vehicles (UAVs), autonomous underwater vehicles (AUVs) and the time varying nature of their navigation, guidance and control systems motivate an integrated approach to trajectory general ion and trajectory tracking for autonomous vehicles. In this paper, an experimental testbed was designed for studying this integrated trajectory control approach. In this paper we apply the separating approach to an autonomous nonlinear vehicle system. A new linear matrix inequality based H$_{\infty}$ control technique for periodic time-varying systems is applied to the role of trajectory tracking. Trajectory general ion is accomplished by exploit ing the differential flatness property of the vehicle system; this at lows product ion of desired feasible nominal or reference trajectories from certain ″flat'system outputs. Simulation and experimental results are presented showing stable tracking of a periodic circular trajectory.

  • PDF

로보트 매니퓰레이터의 비집중 적응제어에 관한 연구 (A study on decentralized adaptive control of robot manipulator)

  • 이상철;박성기;정찬수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1989년도 한국자동제어학술회의논문집; Seoul, Korea; 27-28 Oct. 1989
    • /
    • pp.183-187
    • /
    • 1989
  • This paper presents on approach to the position control of a robot manipulator by using a decentralized adaptive control scheme. The large scale system is regarded as the system which consists of many subsystems having interconnection. In each subsystem, a local control system is composed by feedforward and feedback component, one computes the nominal torque from the Newton-Euler equation, the other computes the perturbation equation which reduce the position error of the manipulator along the nominal trajectory. A computer simulation studies was conducted to evaluate and compare the performances of the proposed manipulator control scheme with those of the PD control and centralized control schemes.

  • PDF

A Full Order Sliding Mode Tracking Controller For A Class of Uncertain Dynamical System

  • Ahmad, M.N.;Nawawi, S.W.;Osman, J.H.S
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1853-1858
    • /
    • 2004
  • This paper presents the development of a full order sliding mode controller for tracking problem of a class of uncertain dynamical system, in particular, the direct drive robot manipulators. By treating the arm as an uncertain system represented by its nominal and bounded parametric uncertainties, a new robust fullorder sliding mode tracking controller is derived such that the actual trajectory tracks the desired trajectory as closely as possible despite the non-linearities and input couplings present in the system. A proportional-integral sliding surface is chosen to ensure the stability of overall dynamics during the entire period i.e. the reaching phase and the sliding phase. Application to a three DOF direct drive robot manipulator is considered.

  • PDF

벨 크랭크 구조를 가지는 6 자유도 진동 시험기의 추적 제어 (Tracking Control of 6-DOF Shaking Table with Bell Crank Structure)

  • 전득재;박성호;박영진;박윤식;김형의
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.306-309
    • /
    • 2005
  • This parer describes the tracking control simulation of 6-DOF shaking table with a bell crank structure, which converts the direction of reciprocating movements. For the Joint coordinate-based control which uses lengths of each actuator, the trajectory conversion process inverse kinematics is performed. Applying the Newton-Euler approach, the dynamic equation of the shaking table is derived. To cope with nonlinear problems, time-delay control(TDC) is considered, which has been noted for its exceptional robustness to parameter uncertainties and disturbance, in addition to steady-state accuracy and computational efficiency. If the nominal model is equal to the real system, joint coordinate-based control can be very efficient. However, manufacturing tolerances installation errors and link offsets contaminate the nominal values of the kinematic parameters used in the kinematic model of the shaking table. To compensate differences between the nominal model and the real system. the joint coordinate-based control using acceleration feedback in the Cartesian coordinate space is proposed.

  • PDF