• Title/Summary/Keyword: Nominal Moment

Search Result 80, Processing Time 0.025 seconds

Flexural Strength of Reinforced Concrete T Beams Strengthened with Soffit and Web Fiber Sheets. (섬유시트로 밑면과 옆면이 보강된 T형 철근콘크리트보의 휨 강도)

  • 박대효;이규철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.469-474
    • /
    • 2002
  • Recently fiber sheets are used for strengthening the damaged concrete structures due to its many advantages such as its durability, non-corrosive nature, low weight, ease of application, cost saving, control of crack propagation, strength to thickness ratio, high tensile strength, serviceability and aesthetic. However, the lack of analytical procedures for predicting the nominal moment capacity by the fiber sheet reinforcement leads to difficulties in the effective process of decisions of the factors in the strengthening procedure. In this work, flexural strengthening effects by fiber sheets bonded on soffit and web of the member are theoretically studied for the reinforced concrete T beam. The analytical solutions are compared with experimental results of several references to verify the proposed approach.

  • PDF

Development of an Optimization Technique for Robust Design of Mechanical Structures (기계 구조의 강건 설계를 위한 최적화 기법의 개발)

  • Jeong, Do-Hyeon;Lee, Byeong-Chae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.1 s.173
    • /
    • pp.215-224
    • /
    • 2000
  • In order to reduce the variation effects of uncertainties in the engineering environments, new robust optimization method, which considers the uncertainties in design process, is proposed. Both design variables and system parameters are considered as random variables about their nominal values. To ensure the robustness of performance function, a new objective is set to minimize the variance of that function. Constraint variations are handled by introducing probability constraints. Probability constraints are solved by the advanced first order second moment (AFOSM) method based on the reliability theory. The proposed robust optimization method has an advantage that the second derivatives of the constraints are not required. The suggested method is examined by solving three examples and the results are compared with those for deterministic case and those available in literature.

The Application of CFD for Ship Design (선박설계를 위한 계산유체역학의 활용)

  • Kim Wu-Joan;Van Suak-Ho
    • Journal of computational fluids engineering
    • /
    • v.8 no.2
    • /
    • pp.42-48
    • /
    • 2003
  • The issues associated with the application of CFD for ship design are addressed. Doubtlessly at the moment, CFD tools are very useful in evaluating hull forms prior to traditional towing tank tests. However, time-consuming pre-processing is an obstacle in the daily application of CFD tools to improve hull forms. The accuracy of computational modeling without sacrificing the usability of CFD system is also to be assessed. The wave generation is still predicted by using potential panel methods, while velocity profiles entering into propeller plane is solved using turbulent flow solvers. The choice of turbulence model is a key to predict nominal wake distribution within acceptable accuracy. The experimental data for CFD validation are invaluable to improve physical and numerical modeling. Other applications of CFD for ship design than hull form improvement are also given. It is certain that CFD can be a cost-effective tool for the design of new and better ships.

A Study on the Flexural Behavior of the RC Beams Strengthened with Glass Fiber Sheets (유리 섬유 시트로 보강된 RC보의 휨거동 특성에 관한 연구)

  • Seo, Sok-Yeong;Cheung, Jin-Hwan;Kim, Seong-Do;Cho, Baik-Soon;Park, Jeong-Yong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.161-164
    • /
    • 2005
  • The flexural behavior of a strengthened beam, that is a reinforced. concrete beam with externally bonded fiber sheets, was theoretically and experimentally investigated. The effects of the amount of glass fiber sheets varying from 1 to 4 plies on the flexural capacity of the strengthened beam are also examined. The flexural rigidity of the strengthened beam was enhanced compared with RC beam. In addition, the failure mode and load-deflection relationship for the strengthened beam and the comparison of analysis with experiment are extensive investigated. Finally, the determination of the nominal moment capacity $M_n$ of the strengthened beam will be discussed

  • PDF

A Study on Reliability Based Design Criteria for Bridge Foundation (교량기초의 신뢰성 설계규준에 관한 연구)

  • 손용우;정철원
    • Computational Structural Engineering
    • /
    • v.6 no.1
    • /
    • pp.77-89
    • /
    • 1993
  • Current Bridge foundation design is based on Working Stress Design(WSD), but Load Factor Based on Optimum Reliability(LFBOR) design method is more rational than the WSD. For this reason, this study proposes a reliability based design criteria for the bridge foundation, which is most common type of bridge foundation(Shallow, Pile and Caission), and also proposes the theoretical basis of nominal safety factors of stability analysis by introducing the reliability theory. The limit state equations of stability analysis of bridge foundation and the uncertainty measuring algorithms of each equation are also derived by Cornell's MFOSM(Mean First Order 2nd Moment Methods)using the stability analysis fourmula Highway Bridge Design Codes.

  • PDF

Enhancement of Computational Efficiency of Reliability Optimization Method by Approximate Evaluation of Sub-Optimization Problem (부 최적화 문제의 근사적인 계산을 통한 신뢰도 최적설계 방범의 효율개선)

  • Jeong, Do-Hyeon;Lee, Byeong-Chae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.10
    • /
    • pp.1597-1604
    • /
    • 2001
  • Alternative computational scheme is presented fur reliability based optimal design using a modified advanced first order second moment (AFOSH) method. Both design variables and design parameters are considered as random variables about their nominal values. Each probability constraint is transformed into a sub -optimization problem and then is resolved with the modified Hasofer- Lind-Rackwitz-Fiessler (HL-RF) method for computational efficiency and convergence. A method of design sensitivity analysis for probability constraint is presented and tested through simple examples. The suggested method is examined by solving several examples and the results are compared with those of other methods.

An Analytical Study on Ductility of Reinforced Concrete Columns under Tension Controlled Region (인장지배영역에서의 철근콘크리드 기둥의 연성에 관한 해석적 연구)

  • 손혁수;김준범;이재훈
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.527-532
    • /
    • 1997
  • Design strength of structural members could be determined by applying a strength reduction factor to nominal strength. At the beginning point of the transition region for the strength reduction factor, P=0.1$\sigma$$_{ck}A_g$, only sectional area and concrete strength are adopted as the variables of P=0.1$\sigma$$_{ck}A_g$. Therefore, P=0.1$\sigma$$_{ck}A_g$ is the empirically adopted which does not consider steel ratio, steel yielding stress, and steel arrangement. So, this research was perpormed the computer program for the analysis of axial force-moment-curvature relationship of reinforced concrete columns by sectional behaviour nonlinear analysis using a concrete compressive stress-strain curve, in order to investigate the ductility of reinforced concrete columns. As a result, ductility indicies of axial force, P=0.1$\sigma$$_{ck}A_g$, represented the lack of consistency of the indicies value for the various sections.

  • PDF

Seismicity of Peninsular Malaysia due to intraplate and far field sources

  • Loi, Daniel W.;Raghunandan, Mavinakere E.;Swamy, Varghese
    • Earthquakes and Structures
    • /
    • v.10 no.6
    • /
    • pp.1391-1404
    • /
    • 2016
  • Peninsular Malaysia lying on the stable Sunda Plate has traditionally been considered safe with low to moderate seismicity. However, far field Sumatran mega-earthquakes have been shown to be capable of triggering ground motions felt in high rise structures in the major Malaysian cities while seismic impact from local earthquakes of moment magnitude 3.8 have reportedly induced nominal structural damages to nearby buildings. This paper presents an overview of the recent seismic activities in and around Peninsular Malaysia with reference to prominent earthquakes generated by far field interplate and local intraplate sources. Records of ground motion data and seismic hazard assessment (SHA) results available in the literature have been analyzed and discussed. The peak ground acceleration (PGA) values from historical records for few local intraplate events were observed to be higher than those for the events from Sumatran Subduction Zone. This clearly points to the need for a detailed and comprehensive SHA incorporating both far field and local sources. Such an analysis would contribute the knowledge required for secure and reliable infrastructure design and safeguard the Malaysian people and economy.

Analysis of steel-GFRP reinforced concrete circular columns

  • Shraideh, M.S.;Aboutaha, R.S.
    • Computers and Concrete
    • /
    • v.11 no.4
    • /
    • pp.351-364
    • /
    • 2013
  • This paper presents results from an analytical investigation of the behavior of steel reinforced concrete circular column sections with additional Glass Fiber Reinforced Polymers (GFRP) bars. The primary application of this composite section is to relocate the plastic hinge region from the column-footing joint where repair is difficult and expensive. Mainly, the study focuses on the development of the full nominal moment-axial load (M-P) interaction diagrams for hybrid concrete sections, reinforced with steel bars as primary reinforcement, and GFRP as auxiliary control bars. A large parametric study of circular steel reinforced concrete members were undertaken using a purpose-built MATLAB(c) code. The parameters considered were amount, location, dimensions and mechanical properties of steel, GFRP and concrete. The results indicate that the plastic hinge was indeed shifted to a less critical and congested region, thus facilitating cost-effective repair. Moreover, the reinforced concrete steel-GFRP section exhibited high strength and good ductility.

Evaluating Seismic Performance of Steel Welded Moment Connections Fabricated with SN Steel (SN 강재가 사용된 강구조 용접모멘트접합부의 내진성능 평가)

  • Oh, Sang-Hoon;Choi, Young-Jae;Yoon, Sung-Kee;Lee, Dong-Gue
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.3
    • /
    • pp.271-280
    • /
    • 2010
  • This study was programmed to fabricate a beam-to-column connection that is limited to a steel-welded moment connection with full-scale members, using SN steel. A cyclic seismic test was conducted of the nine specimens that were fabricated by choosing the test variable for the weld access hole geometry, connection design method, and RBS. From the test results, failure modes, the moment-drift behavior, and the strain distribution were provided. From the specimen material properties, the beam's nominal plastic flexural capacity and classified qualified connection as a special moment flame were calculated. By analyzing the skeleton part and the baushinger part, a range of strength-raising effects, and deformation ratios were provided, with which the seismic performance of the specimens were evaluated. The test results showed that the specimens eliminated their weld access holes that demonstrated higher seismic performance than the specimens' existing weld access holes, and that the WUF-W connection that was reinforced by the supplemental fillet weld around the shear tap that was fastened by five bolts demonstrated superior seismic performance.