• Title/Summary/Keyword: Nominal Model

Search Result 470, Processing Time 0.028 seconds

MODELING OF A BUOYANCY-DRIVEN FLOW EXPERIMENT IN PRESSURIZED WATER REACTORS USING CFD-METHODS

  • Hohne, Thomas;Kliem, Soren
    • Nuclear Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.327-336
    • /
    • 2007
  • The influence of density differences on the mixing of the primary loop inventory and the Emergency Core Cooling (ECC) water in the downcomer of a Pressurised Water Reactor (PWR) was analyzed at the ROssendorf COolant Mixing (ROCOM) test facility. ROCOM is a 1:5 scaled model of a German PWR, and has been designed for coolant mixing studies. It is equipped with advanced instrumentation, which delivers high-resolution information for temperature or boron concentration fields. This paper presents a ROCOM experiment in which water with higher density was injected into a cold leg of the reactor model. Wire-mesh sensors measuring the tracer concentration were installed in the cold leg and upper and lower part of the downcomer. The experiment was run with 5% of the design flow rate in one loop and 10% density difference between the ECC and loop water especially for the validation of the Computational Fluid Dynamics (CFD) software ANSYS CFX. A mesh with two million control volumes was used for the calculations. The effects of turbulence on the mean flow were modelled with a Reynolds stress turbulence model. The results of the experiment and of the numerical calculations show that mixing is dominated by buoyancy effects: At higher mass flow rates (close to nominal conditions) the injected slug propagates in the circumferential direction around the core barrel. Buoyancy effects reduce this circumferential propagation. Therefore, density effects play an important role during natural convection with ECC injection in PWRs. ANSYS CFX was able to predict the observed flow patterns and mixing phenomena quite well.

Reliability assessment of semi-active control of structures with MR damper

  • Hadidi, Ali;Azar, Bahman Farahmand;Shirgir, Sina
    • Earthquakes and Structures
    • /
    • v.17 no.2
    • /
    • pp.131-141
    • /
    • 2019
  • Structural control systems have uncertainties in their structural parameters and control devices which by using reliability analysis, uncertainty can be modeled. In this paper, reliability of controlled structures equipped with semi-active Magneto-Rheological (MR) dampers is investigated. For this purpose, at first, the effect of the structural parameters and damper parameters on the reliability of the seismic responses are evaluated. Then, the reliability of MR damper force is considered for expected levels of performance. For sensitivity analysis of the parameters exist in Bouc- Wen model for predicting the damper force, the importance vector is utilized. The improved first-order reliability method (FORM), is used to reliability analysis. As a case study, an 11-story shear building equipped with 3 MR dampers is selected and numerically obtained experimental data of a 1000 kN MR damper is assumed to study the reliability of the MR damper performance for expected levels. The results show that the standard deviation of random variables affects structural reliability as an uncertainty factor. Thus, the effect of uncertainty existed in the structural model parameters on the reliability of the structure is more than the uncertainty in the damper parameters. Also, the reliability analysis of the MR damper performance show that to achieve the highest levels of nominal capacity of the damper, the probability of failure is greatly increased. Furthermore, by using sensitivity analysis, the Bouc-Wen model parameters which have great importance in predicting damper force can be identified.

Probabilistic study on buildings with MTMD system in different seismic performance levels

  • Etedali, Sadegh
    • Structural Engineering and Mechanics
    • /
    • v.81 no.4
    • /
    • pp.429-441
    • /
    • 2022
  • A probabilistic assessment of the seismic-excited buildings with a multiple-tuned-mass-damper (MTMD) system is carried out in the presence of uncertainties of the structural model, MTMD system, and the stochastic model of the seismic excitations. A free search optimization procedure of the individual mass, stiffness and, damping parameters of the MTMD system based on the snap-drift cuckoo search (SDCS) optimization algorithm is proposed for the optimal design of the MTMD system. Considering a 10-story structure in three cases equipped with single tuned mass damper (STMS), 5-TMD and 10-TMD, sensitivity analyses are carried out using Sobol' indices based on the Monte Carlo simulation (MCS) method. Considering different seismic performance levels, the reliability analyses are done using MCS and kriging-based MCS methods. The results show the maximum structural responses are more affected by changes in the PGA and the stiffness coefficients of the structural floors and TMDs. The results indicate the kriging-based MCS method can estimate the accurate amount of failure probability by spending less time than the MCS. The results also show the MTMD gives a significant reduction in the structural failure probability. The effect of the MTMD on the reduction of the failure probability is remarkable in the performance levels of life safety and collapse prevention. The maximum drift of floors may be reduced for the nominal structural system by increasing the TMDs, however, the complexity of the MTMD model and increasing its corresponding uncertainty sources can be caused a slight increase in the failure probability of the structure.

Strength Evaluation on Sectional Members of Prefabricated Precast Concrete Arch with Reinforced Joint (보강된 이음부가 적용된 조립식 프리캐스트 콘크리트 아치의 단면 강도 평가)

  • Joo, Sanghoon;Chung, Chulhun;Bae, Jaehyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.5
    • /
    • pp.1363-1372
    • /
    • 2014
  • In the previous study, the structural performance of proposed precast concrete arch with reinforced joint was evaluated by structural experiment. In this paper, finite element analysis considering both material and contact nonlinearity was carried out on the specimens of the previous study. Based on the result of analysis and experiment, friction coefficient between concrete blocks was determined. To evaluate the strength of sectional member, elastic analysis was carried out on the arch using linear elastic analysis program. The section force was compared with the nominal strength of arch section. It was concluded that the maximum load of all the specimens exceed the nominal strength of arch section. Those results of the strength evaluation were similar to the results of structural experiments. Therefore, it is concluded that the elastic analysis and ultimate strength model can effectively evaluate the strength for the proposed precast concrete arch composed of concrete blocks and reinforced joint in design.

Effects of the Slopes of the Rotational Axis and Bearing Preloads on the Natural Frequencies and Onset Speed of the Instability of a Rotor Supported on Gas Foil Bearings (가스 포일 베어링으로 지지된 고속 회전체의 경사각과 베어링의 기계적 예압이 고유 진동수와 불안정성 발생 속도에 미치는 영향)

  • Park, Moon Sung;Lee, Jong Sung;Kim, Tae Ho
    • Tribology and Lubricants
    • /
    • v.30 no.3
    • /
    • pp.131-138
    • /
    • 2014
  • This study investigates the effects of the slopes of the rotational axis and bearing preloads on the natural frequencies and onset speeds of the instability of a rotor supported on gas foil bearings (GFBs). The predictive model for the rotating system consists of a rigid rotor supported on two gas foil journal bearings (GFJBs) and a pair of gas foil thrust bearings (GFTBs). Each GFJB supports approximately half the rotor weight. As the slope of the rotational axis increases from $0^{\circ}$(horizontal rotor operation) to $90^{\circ}$(vertical rotor operation), the applied load on the GFJB owing to the rotor weight decreases. The predictions show that the natural frequency and onset speed of instability decrease significantly with an increase in the slope of the rotational axis. In a parametric study, the nominal radial clearance and preload for the GFJB were changed. In general, a decrease in the nominal radial clearance lead to an increase in the natural frequency and onset speed of instability. For constant assembly clearance, the decrease in the preload changed the natural frequency and onset speed of instability with insignificant improvements in the rotordynamic stability. The present predictions can be used as design guidelines for GFBs for oil-free high-speed rotating machinery with improved rotordynamic performance.

Generation of Zero Pronouns using Center Transition of Preceding Utterances (선행 발화의 중심 전이를 이용한 영형 생성)

  • Roh, Ji-Eun;Na, Seung-Hoon;Lee, Jong-Hyeok
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.10
    • /
    • pp.990-1002
    • /
    • 2005
  • To generate coherent texts, it is important to produce appropriate pronouns to refer to previously-mentioned things in a discourse. Specifically, we focus on pronominalization by zero pronouns which frequently occur in Korean. This paper investigates zero pronouns in Korean based on the cost-based centering theory, especially focusing on the center transitions of adjacent utterances. In previous centering works, only one type of nominal entity has been considered as the target of pronominalization, even though other entities are frequently pronominalized as zero pronouns. To resolve this problem, and explain the reference phenomena of real texts, four types of nominal entity (Npair, Ninter, Nintra, and Nnon) from centering theory are defined with the concept of inter-, intra-, and pairwise salience. For each entity type, a case study of zero phenomena is performed through analyzing corpus and building a pronominalization model. This study shows that the zero phenomena of entities which have been neglected in previous centering works are explained via the renter transition of the second previous utterance. We also show that in Ninter, Nintra, and Nnon, pronominalization accuracy achieved by complex combination of several types of features is completely or nearly achieved by using the second previous utterance's transition across genres.

Robust stability analysis of real-time hybrid simulation considering system uncertainty and delay compensation

  • Chen, Pei-Ching;Chen, Po-Chang
    • Smart Structures and Systems
    • /
    • v.25 no.6
    • /
    • pp.719-732
    • /
    • 2020
  • Real-time hybrid simulation (RTHS) which combines physical experiment with numerical simulation is an advanced method to investigate dynamic responses of structures subjected to earthquake excitation. The desired displacement computed from the numerical substructure is applied to the experimental substructure by a servo-hydraulic actuator in real time. However, the magnitude decay and phase delay resulted from the dynamics of the servo-hydraulic system affect the accuracy and stability of a RTHS. In this study, a robust stability analysis procedure for a general single-degree-of-freedom structure is proposed which considers the uncertainty of servo-hydraulic system dynamics. For discussion purposes, the experimental substructure is a portion of the entire structure in terms of a ratio of stiffness, mass, and damping, respectively. The dynamics of the servo-hydraulic system is represented by a multiplicative uncertainty model which is based on a nominal system and a weight function. The nominal system can be obtained by conducting system identification prior to the RTHS. A first-order weight function formulation is proposed which needs to cover the worst possible uncertainty envelope over the frequency range of interest. Then, the Nyquist plot of the perturbed system is adopted to determine the robust stability margin of the RTHS. In addition, three common delay compensation methods are applied to the RTHS loop to investigate the effect of delay compensation on the robust stability. Numerical simulation and experimental validation results indicate that the proposed procedure is able to obtain a robust stability margin in terms of mass, damping, and stiffness ratio which provides a simple and conservative approach to assess the stability of a RTHS before it is conducted.

Analysis of Export Behaviors of Busan, Incheon and Gwangyang Port (부산항, 인천항, 광양항의 수출행태분석)

  • Mo, Soowon;Chung, Hongyoung;Lee, Kwangbae
    • Journal of Korea Port Economic Association
    • /
    • v.32 no.3
    • /
    • pp.35-46
    • /
    • 2016
  • This study investigates the export behavior of Busan, Gwangyang and Incheon Port. The monthly data cover the period from January 2000 to December 2015. We employ six export functions composed of various exchange rates and industrial production index. This paper finds that the nominal effective exchange rate is more appropriate for explaining the export behaviors of the three ports, regardless of the narrow and wide indices which comprise 26 and 61 economies for the nominal and real indices respectively. This paper tests whether exchange rate and industrial production are stationary or not, rejecting the null hypothesis of a unit root in each of the level variables and of a unit root for the residuals from the cointegration at the 5 percent significance level. The error-correction model is estimated to find that both Gwangyang and Incheon ports are much slower than Busan port in adjusting the short-run disequilibrium and Gwangyang port is a little slower than Incheon port. The rolling regressions show that the influence of exchange rate as well as industrial production tends to decrease in all of three ports. The variance decomposition, however, shows that the export variables are very exogenous and the export of Busan Port is the least exogenous and that of Gwangyang Port the most. This result indicates that the economic variables such as exchange rate and economic activity affect the export of Busan Port more strongly than that of Gwangyang and Incheon Port.

Analysis of The Relationships between Religions in Southeast Asia and Tourism Demand in Korea (동남아시아 지역 종교와 방한 관광수요의 영향 관계분석)

  • Kim, Do-Hoon
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.6
    • /
    • pp.123-130
    • /
    • 2023
  • As part of the research on cultural factors that determine international tourism demand, this study was conducted based on regional interest and the need for understanding religion. The purpose of this study is to empirically test how religious factors affect tourism demand in Korea to find out that religious factors are important considerations in establishing tourism policies and strategies. To achieve the purpose of this study, the research target areas were selected as Thailand, Indonesia, and the Philippines, which have relatively many tourists visiting Korea among Southeast Asian countries and are well known for their religious characteristics. GDP and nominal exchange rate, which are economic factors, were selected as explanatory variables. And religious diversity was selected as a characteristic factor variable of the tourism demand model based on the characteristic theory. An empirical analysis was conducted through a gravity model. As a result of the estimation, it was found that GDP has a positive effect on tourism demand in Korea. Nominal exchange rate variables and religious diversity variables were found to have a negative effect on tourism demand in Korea. We have confirmed that religion is an important factor in choosing tourist destinations for Filipino, Thai, and Malaysian tourists visiting Korea, and they choose religiously similar destinations.

Comparisons of Numerical Analyses considering the Effects of Shear Strength Degradation For Nonseismic Designed RC Frame (비내진 설계된 RC 골조에 대한 전단강도 감소 효과를 고려한 수치해석의 비교)

  • Lee, Young-Wook
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.1 s.47
    • /
    • pp.1-8
    • /
    • 2006
  • Nonseismic designed RC frame have a possibility of shear failure because of deficiencies of reinforcing details. To model the shear failure in numerical analysis, shear strength degradation models which Include Moehle's and ATC 40 are compared and applied to push-over analysis. For numerical analysis, three storied building frame is selected and designed according to Korean Concrete Design Code(2003). As results, It is shown that Moehle's shear strength degradation model estimates the shear strength lower than NZSEE model and has less variation than ATC 40 model and all the shear strengths of models are greater than the nominal shear strength of ACI 318. Also, from the numerical analysis, it is pointed out that there may be great difference in lateral drift capacity if a different shear strength model is used. And the capacity can be severely underestimated if the restraining model of plastic rotation of ATC 40 is used, compared to the use of shear spring model for shear degradation.