• Title/Summary/Keyword: Noisy Model

검색결과 347건 처리시간 0.025초

원격지도학습데이터의 오류를 처리하는 강화학습기반 관계추출 모델 (Relation Extraction Model for Noisy Data Handling on Distant Supervision Data based on Reinforcement Learning)

  • 윤수지;남상하;김은경;최기선
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2018년도 제30회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.55-60
    • /
    • 2018
  • 기계학습 기반인 관계추출 모델을 설계할 때 다량의 학습데이터를 빠르게 얻기 위해 원격지도학습 방식으로 데이터를 수집한다. 이러한 데이터는 잘못 분류되어 학습데이터로 사용되기 때문에 모델의 성능에 부정적인 영향을 끼칠 수 있다. 본 논문에서는 이러한 문제를 강화학습 접근법을 사용해 해결하고자 한다. 본 논문에서 제안하는 모델은 오 분류된 데이터로부터 좋은 품질의 데이터를 찾는 문장선택기와 선택된 문장들을 가지고 학습이 되어 관계를 추출하는 관계추출기로 구성된다. 문장선택기는 지도학습데이터 없이 관계추출기로부터 피드백을 받아 학습이 진행된다. 이러한 방식은 기존의 관계추출 모델보다 좋은 성능을 보여주었고 결과적으로 원격지도학습데이터의 단점을 해결한 방법임을 보였다.

  • PDF

다중칼만필터를 이용한 음성향상 (Speech Enhancement Using Multiple Kalman Filter)

  • 이기용
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1998년도 제15회 음성통신 및 신호처리 워크샵(KSCSP 98 15권1호)
    • /
    • pp.225-230
    • /
    • 1998
  • In this paper, a Kalman filter approach for enhancing speech signals degraded by statistically independent additive nonstationary noise is developed. The autoregressive hidden markov model is used for modeling the statistical characteristics of both the clean speech signal and the nonstationary noise process. In this case, the speech enhancement comprises a weighted sum of conditional mean estimators for the composite states of the models for the speech and noise, where the weights equal to the posterior probabilities of the composite states, given the noisy speech. The conditional mean estimators use a smoothing spproach based on two Kalmean filters with Markovian switching coefficients, where one of the filters propagates in the forward-time direction with one frame. The proposed method is tested against the noisy speech signals degraded by Gaussian colored noise or nonstationary noise at various input signal-to-noise ratios. An app개ximate improvement of 4.7-5.2 dB is SNR is achieved at input SNR 10 and 15 dB. Also, in a comparison of conventional and the proposed methods, an improvement of the about 0.3 dB in SNR is obtained with our proposed method.

  • PDF

잡음 환경에서의 음성 감정 인식을 위한 특징 벡터 처리 (Feature Vector Processing for Speech Emotion Recognition in Noisy Environments)

  • 박정식;오영환
    • 말소리와 음성과학
    • /
    • 제2권1호
    • /
    • pp.77-85
    • /
    • 2010
  • This paper proposes an efficient feature vector processing technique to guard the Speech Emotion Recognition (SER) system against a variety of noises. In the proposed approach, emotional feature vectors are extracted from speech processed by comb filtering. Then, these extracts are used in a robust model construction based on feature vector classification. We modify conventional comb filtering by using speech presence probability to minimize drawbacks due to incorrect pitch estimation under background noise conditions. The modified comb filtering can correctly enhance the harmonics, which is an important factor used in SER. Feature vector classification technique categorizes feature vectors into either discriminative vectors or non-discriminative vectors based on a log-likelihood criterion. This method can successfully select the discriminative vectors while preserving correct emotional characteristics. Thus, robust emotion models can be constructed by only using such discriminative vectors. On SER experiment using an emotional speech corpus contaminated by various noises, our approach exhibited superior performance to the baseline system.

  • PDF

Noisy Image Segmentation via Swarm-based Possibilistic C-means

  • Yu, Jeongmin
    • 한국컴퓨터정보학회논문지
    • /
    • 제23권12호
    • /
    • pp.35-41
    • /
    • 2018
  • In this paper, we propose a swarm-based possibilistic c-means(PCM) algorithm in order to overcome the problems of PCM, which are sensitiveness of clustering performance due to initial cluster center's values and producing coincident or close clusters. To settle the former problem of PCM, we adopt a swam-based global optimization method which can be provided the optimal initial cluster centers. Furthermore, to settle the latter problem of PCM, we design an adaptive thresholding model based on the optimized cluster centers that yields preliminary clustered and un-clustered dataset. The preliminary clustered dataset plays a role of preventing coincident or close clusters and the un-clustered dataset is lastly clustered by PCM. From the experiment, the proposed method obtains a better performance than other PCM algorithms on a simulated magnetic resonance(MR) brain image dataset which is corrupted by various noises and bias-fields.

DSR 환경에서의 다 모델 음성 인식시스템의 성능 향상 방법에 관한 연구 (A Study on Performance Improvement Method for the Multi-Model Speech Recognition System in the DSR Environment)

  • 장현백;정용주
    • 융합신호처리학회논문지
    • /
    • 제11권2호
    • /
    • pp.137-142
    • /
    • 2010
  • 다 모델 음성인식기는 잡음환경에서 매우 우수한 성능을 보이는 것으로 평가되고 있다. 그러나 지금까지 다 모델 기반인식기의 성능시험에는 잡음에 대한 적응을 고려하지 않은 일반적인 전처리 방식이 주로 활용하였다. 본 논문에서는 보다 정확한 다 모델 기반인식기에 대한 성능 평가를 위해서 잡음에 대한 강인성이 충분히 고려된 전처리 방식을 채택하였다. 채택된 전처리 알고리듬은 ETSI (European Telecommunications Standards Institute)에서 DSR (Distributed Speech Recognition) 잡음환경을 위해서 제안된 AFE (Advanced Front-End) 방식이며 성능비교를 위해서 DSR 환경에서 좋은 성능을 나타낸 것으로 알려진 MTR (Multi-Style Training)을 사용하였다. 또한, 본 논문에서는 다 모델 기반인식기의 구조를 개선하여 인식성능의 향상을 이루고자 하였다. 기존의 방식과 달리 잡음음성과 가장 가까운 N개의 기준 HMM을 사용하여 기준 HMM의 선택시에 발생할 수 있는 오류 및 잡음신호의 변이에 대한 대비를 하도록 하였으며 각각의 기준 HMM을 훈련을 위해서 다수의 SNR 값을 이용함으로서 구축된 음향모델의 강인성을 높일 수 있도록 하였다. Aurora 2 데이터베이스에 대한 인식실험결과 개선된 다 모델기반인식기는 기존의 방식에 비해서 보다 향상된 인식성능을 보임을 알 수 있었다.

심전도 신호의 전력선 잡음 제거를 위한 Deep De-noising Network 설계 (Design of Deep De-nosing Network for Power Line Artifact in Electrocardiogram)

  • 권오윤;이지은;권준환;임성준;유선국
    • 한국멀티미디어학회논문지
    • /
    • 제23권3호
    • /
    • pp.402-411
    • /
    • 2020
  • Power line noise in electrocardiogram signals makes it difficult to diagnose cardiovascular disease. ECG signals without power line noise are needed to increase the accuracy of diagnosis. In this paper, it is proposed DNN(Deep Neural Network) model to remove the power line noise in ECG. The proposed model is learned with noisy ECG, and clean ECG. Performance of the proposed model were performed in various environments(varying amplitude, frequency change, real-time amplitude change). The evaluation used signal-to-noise ratio and root mean square error (RMSE). The difference in evaluation metrics between the noisy ECG signals and the de-noising ECG signals can demonstrate effectiveness as the de-noising model. The proposed DNN model learning result was a decrease in RMSE 0.0224dB and a increase in signal-to-noise ratio 1.048dB. The results performed in various environments showed a decrease in RMSE 1.7672dB and a increase in signal-to-noise ratio 15.1879dB in amplitude changes, a decrease in RMSE 0.0823dB and a increase in signal-to-noise ratio 4.9287dB in frequency changes. Finally, in real-time amplitude changes, RMSE was decreased 0.3886dB and signal-to-noise ratio was increased 11.4536dB. Thus, it was shown that the proposed DNN model can de-noise power line noise in ECG.

감마톤 특징 추출 음향 모델을 이용한 음성 인식 성능 향상 (Speech Recognition Performance Improvement using Gamma-tone Feature Extraction Acoustic Model)

  • 안찬식;최기호
    • 디지털융복합연구
    • /
    • 제11권7호
    • /
    • pp.209-214
    • /
    • 2013
  • 음성 인식 시스템에서는 인식 성능 향상을 위한 방법으로 인간의 청취 능력을 인식 시스템에 접목하였으며 잡음 환경에서 음성 신호와 잡음을 분리하여 원하는 음성 신호만을 선택할 수 있도록 구성되었다. 하지만 실용적 측면에서 음성 인식 시스템의 성능 저하 요인으로 인식 환경 변화에 따른 잡음으로 인한 음성 검출이 정확하지 못하여 일어나는 것과 학습 모델이 일치하지 않는 것을 들 수 있다. 따라서 본 논문에서는 음성 인식 향상을 위해 감마톤을 이용하여 특징을 추출하고 음향 모델을 이용한 학습 모델을 제안하였다. 제안한 방법은 청각 장면 분석을 이용한 특징을 추출을 통해 인간의 청각 인지 능력을 반영하였으며 인식을 위한 학습 모델 과정에서 음향 모델을 이용하여 인식 성능을 향상시켰다. 성능 평가를 위해 잡음 환경의 -10dB, -5dB 신호에서 잡음 제거를 수행하여 SNR을 측정한 결과 3.12dB, 2.04dB의 성능이 향상됨을 확인하였다.

Analysis and Optimization of Cooperative Spectrum Sensing with Noisy Decision Transmission

  • Liu, Quan;Gao, Jun;Guo, Yunwei;Liu, Siyang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제5권4호
    • /
    • pp.649-664
    • /
    • 2011
  • Cooperative spectrum sensing (CSS) with decision fusion is considered as a key technology for tackling the challenges caused by fading/shadowing effects and noise uncertainty in spectrum sensing in cognitive radio. However, most existing solutions assume an error-free decision transmission, which is obviously not the case in realistic scenarios. This paper extends the general decision-fusion-based CSS scheme by considering the fading/shadowing effects and noise corruption in the common control channels. With this more practical model, the fusion centre first estimates the local decisions using a binary minimum error probability detector, and then combines them to get the final result. Theoretical analysis and simulation of this CSS scheme are performed over typical channels, which suggest some performance deterioration compared with the pure case that assumes an error-free decision transmission. Furthermore, the fusion strategy optimization in the proposed cooperation model is also investigated using the Bayesian criteria. The numerical results show that the total error rate of noisy CSS is higher than that of the pure case, and the optimal values of fusion parameter in the counting rule under both cases decrease as the local detection threshold increases.

DSP를 이용한 자동차 소음에 강인한 음성인식기 구현 (Implementation of a Robust Speech Recognizer in Noisy Car Environment Using a DSP)

  • 정익주
    • 음성과학
    • /
    • 제15권2호
    • /
    • pp.67-77
    • /
    • 2008
  • In this paper, we implemented a robust speech recognizer using the TMS320VC33 DSP. For this implementation, we had built speech and noise database suitable for the recognizer using spectral subtraction method for noise removal. The recognizer has an explicit structure in aspect that a speech signal is enhanced through spectral subtraction before endpoints detection and feature extraction. This helps make the operation of the recognizer clear and build HMM models which give minimum model-mismatch. Since the recognizer was developed for the purpose of controlling car facilities and voice dialing, it has two recognition engines, speaker independent one for controlling car facilities and speaker dependent one for voice dialing. We adopted a conventional DTW algorithm for the latter and a continuous HMM for the former. Though various off-line recognition test, we made a selection of optimal conditions of several recognition parameters for a resource-limited embedded recognizer, which led to HMM models of the three mixtures per state. The car noise added speech database is enhanced using spectral subtraction before HMM parameter estimation for reducing model-mismatch caused by nonlinear distortion from spectral subtraction. The hardware module developed includes a microcontroller for host interface which processes the protocol between the DSP and a host.

  • PDF

숨은마코프모형을 이용하는 음성 끝점 검출을 위한 이산 특징벡터 (A Discrete Feature Vector for Endpoint Detection of Speech with Hidden Markov Model)

  • 이재기;오창혁
    • 응용통계연구
    • /
    • 제21권6호
    • /
    • pp.959-967
    • /
    • 2008
  • 본 연구의 목적은 숨은마코프모형을 사용하여 음성구간의 끝점을 검출하는 문제에서 소음의 환경에서도 강건하며 계산의 부하가 적은 이산형 특징벡터를 제안하고 이의 성질을 실증적으로 밝히는 것이다. 제시된 특징벡터는 일차원의 소리 신호의 에너지의 변화율을 나타내는 경사도이며 숨은마코프모형과 관련된 계산에서의 부하를 감소하기 위하여 세 개의 값으로 이산화하였다. 여러 소음 수준의 끝점 검출의 실험에서, 제시된 특징벡터가 잡음 환경에서도 강건함을 보였다.