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Abstract 
 

Cooperative spectrum sensing (CSS) with decision fusion is considered as a key technology 
for tackling the challenges caused by fading/shadowing effects and noise uncertainty in 
spectrum sensing in cognitive radio. However, most existing solutions assume an error-free 
decision transmission, which is obviously not the case in realistic scenarios. This paper 
extends the general decision-fusion-based CSS scheme by considering the fading/shadowing 
effects and noise corruption in the common control channels. With this more practical model, 
the fusion centre first estimates the local decisions using a binary minimum error probability 
detector, and then combines them to get the final result. Theoretical analysis and simulation of 
this CSS scheme are performed over typical channels, which suggest some performance 
deterioration compared with the pure case that assumes an error-free decision transmission. 
Furthermore, the fusion strategy optimization in the proposed cooperation model is also 
investigated using the Bayesian criteria. The numerical results show that the total error rate of 
noisy CSS is higher than that of the pure case, and the optimal values of fusion parameter in 
the counting rule under both cases decrease as the local detection threshold increases. 
 
 
Keywords: Cognitive radio, cooperative spectrum sensing, energy detection, decision fusion, 
minimum error probability criteria, Bayesian criteria 
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1. Introduction 

Cognitive radio (CR) is widely considered as the next big thing in wireless communication 
because of its promising paradigm for solving the increasingly severe spectrum scarcity 
problem [1][2]. In an opportunistic manner, secondary (unauthorized) users (SU) in a 
cognitive radio network (CRN) can dynamically exploit the precious white or grey spectrum 
holes [3], which are underutilized by the current primary (authorized) users (PU) in multiple 
dimensions of time, space, code, and so on [4]. Under a hierarchical dynamic access model [5], 
this kind of spectrum sharing is only allowed when interference is not introduced to the PUs, 
which entails periodic or continuous spectrum identification by SUs. Direct spectrum sensing 
has received more attention than the other candidates for spectrum identification, such as 
database or beacons, owing to the relatively low infrastructure cost and compatibility with the 
existing legacy primary systems [6]. 

As the fundamental issue of CRN, spectrum sensing generally means to detect quickly and 
reliably the presence of the primary signals [7]. Among various possibilities, energy detection 
(ED) [8][9] is the optimal sensing algorithm and has been widely applied thanks to its 
relatively low complexity and lack of requirements for prior knowledge of the network. 
However, ED performance is very susceptible to multipath fading/shadowing and noise 
uncertainty, which necessitates cooperative spectrum sensing (CSS) among different SUs in 
the MAC layer of CRN [10][11][12]. Recently, numerous ED-based CSS schemes that take 
advantage of spatial diversity in centralized or decentralized scenarios have been proposed in 
the literature. On the basis of the fusion methods in cooperation, the existing schemes can be 
categorized mainly into data fusion [13][14][15][16]and decision fusion [12][13][17][18][19]. 
With regard to the former, typical algorithms, such as maximal ratio combination [13], equal 
gain combination [13], deflection-criteria based combination [14], and optimal weigh-setting 
combination [15][16],  have  been  investigated.  With  regard  to  the  latter,  CSS  with  OR-rule  
decision fusion has been demonstrated to improve the detection performance, relax the local 
sensitivity requirements, and increase the agility and efficiency of the secondary access [12]. 
Furthermore, the optimization of CSS with the K out of N rule (also called the counting rule) 
has been discussed [18][19]. Many researchers have also proposed some softened decision 
fusion schemes that require sharing more information on the reliability and accuracy of 
different SUs [13][20]. For example, two bits are used to represent each local decision, and 
then  all  the  decisions  are  summed  up  with  different  weights  at  the  base  station  [13]. More 
details about these two categories of fusion-based CSS schemes can be found in the literature 
[1]. Some other related studies on spectrum sensing include sensing scheduling [21][22], 
sensing security[23][24], relay-based CSS schemes[25][26][27], and consensus- based CSS 
schemes[24][28]. 

In employing decision fusion instead of data fusion, obvious performance degradation 
occurs because of the information loss during the combination. However, in practice, decision 
fusion may still be the better choice because of its significantly lower communication 
overhead and narrower bandwidth in the common control channels. These characteristics 
coincide well with the tenet of CRN: high spectrum efficiency.  

Most CSS schemes with decision fusion in published papers assume an error-free decision 
transmission. However, such assumption may result in misleading performance interpretations 
because decision transmission is hardly perfect in realistic scenarios [29].  In this  paper,  we 
extend this pure cooperation model by acknowledging the fading/shadowing effects and noise 
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corruption in the common control channels, which are collectively called as noisy CSS. Using 
numerical and simulation results, we analyze the local performance of energy detection over 
several typical channels. Moreover, we extend the CSS scheme based on energy detection and 
the K out of N rule by considering the fading/shadowing/ correlated shadowing effects and 
noise corruption not only in the sensing channels but also in the control channels [12][17][29]. 
Using the proposed model, we verify if performance deterioration occurs by comparing the 
extended CSS scheme and the pure case with ideal decision transmission. Finally, we 
investigate further the optimal fusion strategy in the proposed scheme. We recognize that the 
optimal value of K in the counting rule depends primarily on the channel characteristics and 
the detection threshold in local sensing. 

The rest of this paper is organized as follows. In Section 2, the system model that considers 
an imperfect decision transmission is developed. In Section 3, the performance of local 
sensing,  pure  CSS,  and  noisy  CSS  over  different  channels  are  analyzed  and  simulated.  In  
Section 4, the optimization problem is investigated. In Section 5, the conclusions are drawn. 

2. System Model 

In the present study, the system setup is a CRN composed of N  SUs and a fusion centre (FC), 
as shown in Fig.  1.  We assume that each SU performs spectrum sensing simultaneously by 
detecting the primary signal in the sensing channel. Local binary decisions are sent through the 
control channels to the FC for combination. The primary signal and decision signals may be 
faded and noise corrupted during transmission, respectively, due to the imperfections of the 
communication mediums. 
 

 
Fig. 1. System setup 

2.1 Local Spectrum Sensing 
We choose energy detectors for local sensing without obscuring the analysis by employing 
more sophisticated sensing algorithms, since our goal is to characterize the performance gains 
achieved by cooperation. Fig. 2 illustrates the block diagram of an energy detector [8][9], 
where ( )ix t , sil , id , and 2

sid  denote the observed signal, the detection threshold, the local 
binary decision (‘0’/‘1’), and the average noise power at SUi  ( [1, ]i NÎ ), respectively. 
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According to the detection theory developed by Urkowitz[8], the detection process can be 
formulated as a binary hypothesis testing problem: 
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where m is the time-bandwidth product, m=TW, T is the observation time, W is the sensing 
channel bandwidth, ( )s n  is the sampled primary signal, and iY , ( )sih n , and ( )siw n  represent 
the normalized test statistic, the sampled amplitude gain, and the sampled additive white 
Gaussian noise at SUi , respectively.  
 

 
Fig. 2. Block diagram of the i-th energy detector 

 
iY  has been derived as having a central and a non-central chi-square distributions under H0 

and H1, respectively [8][9]: 
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where sig is the local sensing SNR with the definition 
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N0i denotes the one-sided noise power spectral density, and siP  is the received primary signal 
power. The following generic probabilistic model is typically used in characterizing the local 
sensing performance: 

{ } { }Pr | , , 0,1ij i i jP d H H i j= = Î  

In particular, we use 11diP P=  and 10fiP P=  to denote the probabilities of detection and false 
alarm at SUi , respectively. 

2.2 Decision Transmission 
The control channels and the sensing channels are always assumed to have similar 
characteristics. Thus, the decision transmission model is 

( ) ( ) ( )i ci i ciz t h t Ad w t= +                                                  (4) 
where A, ( )iz t , ( )cih t , and ( )ciw t  represent the amplification factor, the received signal, the 
channel gain, and the additive white Gaussian noise with zero mean in the i-th control channel, 
respectively. Hence, the SNR of the i-th control channel is 
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where 2
ci

d  is the average noise power. 

2.3 Decision Fusion 
To realize the spatial diversity, the fusion centre has to accomplish the following tasks [29]: 

(1) Estimate the initial local decisions from the received signals, which might have been 
faded and noise corrupted in the control channels. 

(2) Fuse the estimated decisions with the proper combination rules. 
For the first step, we use a detector based on the minimum error probability (MEP) criteria 

[30]. The recovery of the decisions can also be modeled as a binary signal detection problem: 
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where ioD  and 1iD  denote the initial i-th decision ‘0’ and ‘1’, respectively. The costs of right 
estimations are always considered to be zero and that of error estimations equal to one, i.e., 

00 11 0c c= = , 01 10 1c c= = , 00 11 0c c= = , and 01 10 1c c= = . Thus, the classical Bayesian 
average risk is reduced to the average error probability 

( ) ( ) ( ) ( )0 1 0 1 0 1| |i ie i i i i i iR P P D P say D D P D P say D D= = +                    (7) 

where ( )0iP D  and ( )1iP D  are the probabilities of ioD  and 1iD , respectively. Then,  

( ) ( ) ( )1 0 1 00 01 00{ 0} 1 1i i H H di H fi HP D P d P P P P P P P P= = = + = - + -                 (8) 

( ) 1 0 1 01 11 10{ 1}i i H H di H fi HP D P d P P P P P P P P= = = + = +                            (9) 
where 

1HP  and 
0HP  denote the probabilities of the presence and the absence of the primary 

user, respectively. Hence, the MEP-rule based detection can be represented as [30] 
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In the AWGN control channels, the detection process has been derived [30], which can be 
simplified as 
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ith local decision. The MEP detector requires the knowledge of ( )0iP D  and ( )1iP D  that may 
be unknown at FC. Therefore, we use the approximation method similar to that given in the 
literature [29]. With the application of the Strong Law of Large Numbers,  
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An unbiased estimate of ( )1iP D  is ° ( )1i
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=  because N is finite in practice. Then, 
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After the estimation of all the binary decisions ° ° °1 2, Nd d dL , FC continues to combine them 
to obtain the final decision Fd  for the current sensing period, and then broadcast it to all the 
cooperative SUs. For simplicity, we choose the K out of N rule for the decision combination: 
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which means that 1Fd =  if K or more estimated local decisions are equal to 1. In special cases, 
the fusion rule is reduced to the OR rule, the AND rule, and the MAJ rule when K is equal to 1, 
N, and / 2Né ùê ú , respectively. 

3. Performance Analysis and Simulation 

3.1 Local Sensing Performance 

Over the AWGN sensing channels, ( )sih n  is deterministic. Thus, the probabilities of detection, 
false alarm, and miss detection at SUi may be written as [9] 

( )1{ | } 2 ,di i i m si iP P Y H Q ml g l= > =                                    (15) 

( )0{ | } 1 / 2,fi i i iP P Y H ml l= > = -G                                       (16) 
1mi diP P= -                                                            (17) 

respectively, where ( , )mQ × ×  and ( , )G × ×  represent the Marcum Q-function and the incomplete 
gamma function, respectively, with the definitions [31] 
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where ( )aG  is the gamma function 1
0

( ) t aa e t dt
¥ - -G = ò . 

The local performance can be extended to account for different channel effects, such as 
fading/shadowing [9]. As expected, fP  remains constant under any channel because it is 
considered when the primary signal is absent, and is thus independent of the sensing SNR. 
When the sensing channel gain varies due to fading/shadowing, the average probability of 
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detection can be derived by averaging diP  in (15) over the probability density function (PDF) 
of sig [9], 

( ) ( )2 ,di sisi
m iP Q mx f x dxgg

l= ò                                     (20) 

In general, the SNR of a practical channel can be statistically represented via the combination 
of three terms [17]: 

dBdB dB dBSNR SNR Shadow Fading= + +                                 (21) 
where the three terms in dB on the right  denote the mean SNR, the shadowing (also called 
large scale fading ) effects, and the small scale fading effects, respectively. The characteristics 
of several typical channels often used in wireless communication are summarized as follows: 

Log-normal shadowing channel: After attenuation by the obstacles in the propagation path, 
the empirical measurements suggest that the variation of the received power follows a normal 
distribution when represented in dB. Thus, the PDF of the linear SNRg  (as opposed to dB) is 
[17] 
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where dBs  is the dB-spread of the shadowing effects, andg is the average SNR.  
Rayleigh channel: The signal amplitude in this kind of channel follows a Rayleigh 

distribution, and g  follows an exponential PDF [9]: 
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Nakagami channel: In this channel, the signal amplitude follows a Nakagami distribution. 
Then, g  follows a gamma PDF [9]: 
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where g  is the Nakagami parameter, and the channel is reduced to either AWGN when 
g = ¥ , or Rayleigh when 1g = . 

Suzuki channel: This channel is a mixture of Rayleigh and Shadowing effects, and g  
follows a Suzuki distribution [17]: 
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Closed expressions and numerical results of the performance in some of the above channels 
have been given in the literature [9][12][17].  To validate  the analysis  above,  we perform a 
simulation study on the local sensing. First, we choose a BPSK signal as the primary signal. 
After its transmission in the fading/shadowing channels listed above, an energy detector is 
used  to  sense  its  presence  via  Monte  Carlo  simulation  with  100,000  trials.  The  simulation  
parameters are given as follows: 5m = , 5s dBg = , 6dB dBs = , and 3g = . Fig. 3 shows the 
complementary receiver operating characteristic (CROC) curves (plot of Pm vs Pf) over these 
channels. The corresponding theoretical results calculated by numerical integration methods 
in (20) are also given for comparison. The simulation results clearly coincide well with that in 
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theory. The detection over the AWGN channel outperforms other cases most of the time. In 
contrast, the Suzuki channel provides the worst-case scenario among all of the listed channels. 
Further simulations are also performed with some primary signals that are more complicated, 
such as a mixed signal. The results are very similar with that in Fig. 3, which verifies that the 
energy detector solely depends on signal power, rather than on signal forms or any other prior 
knowledge. 

 

 
Fig. 3. Complementary receiver operating characteristic (CROC) curves of local energy detection over 

typical channels 

3.2 Collective Sensing Performance of CSS 
For simplicity, the relative distances between any two SUs are assumed to be smaller than their 
distances  to  the  PU.  Thus,  we  first  consider  that  all  N SUs experience independent and 
identically distributed channel effects, with the same sg  in all sensing channels and the same 

cg  in all control channels. Spatially correlated shadowing is discussed later. 
For the AWGN scenario, the primary signal and the local decisions are assumed to be only 

corrupted by noise without any fading or shadowing, 2(0, )
ssw N d:  and 2(0, )

ccw N d: . 
Intuitively, the equivalent local performance at FC after decision estimation may deteriorate to 
some extent. For SUi , the equivalent local probabilities of false alarm and detection can be 
derived as follows: 
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where ( )21( ) exp / 2
2 x

Q x t dt
p

¥
= -ò . 

After fusion by the K out of N rule, the collective probabilities of false alarm, detection, and 
miss detection are 
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° °( )Q 1, , dim FB K N P= -                                                  (30) 
respectively,  because  the  noise  statistics  of  all  SUs  are  the  same.  In  (30),  
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 is the Binomial cumulative distribution function [31].  

Furthermore, we can also obtain the average performance in fading/shadowing scenarios 
with variational sg  and cg  by integrating (28)–(30) with the PDFs of sg  and cg : 

° °
,Q Q ( ) ( )
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f avg f f x f y dxdyg gg g

= ò ò                                     (31) 

° °
,Q Q ( ) ( )
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° °
, ,Q 1 Qm avg d avg= -                                                    (33) 

The CROC curves of CSS with noisy decisions over several typical channels for various cg  
are plotted in Fig. 4-(a)–(d). These plots are obtained by numerical computation and are also 
verified with Monte Carlo simulation according to Section 2 with 100,000 trials. The 
simulation process is performed with a BPSK primary signal and 10 SUs ( 10N = ), and setting 
other parameters as 10m = , 0s dBg = , 2dB dBs = , and 1K =  (the OR rule). For comparison, 
the corresponding simulated and theoretical performance of local sensing and pure CSS (i.e., 
the CSS scheme without any fading or noise corruption in the control channels [12] ) are also 
shown. Thus, in all below figures, we use ‘noisy’, ‘local,’ and ‘pure’ as shorthand 
representations  of  the  three  schemes,  and  also,  we  use  fQ  and mQ  to denote their general 
probabilities of false alarm and miss detection, respectively. 

As expected, CSS can effectively counteract the deleterious impacts of fading/shadowing in 
sensing channels because the decision fusion can result in a higher chance of having a user 
with its  sensing SNR well  above the average.  However,  there is  a  performance drop in the 
noisy CSS compared with that in the pure case. This drop is due to the transmission error of the 
local decisions caused by fading/shadowing effects and noise corruption in the common 
control channels. The collective performance of noisy CSS is even worse than the local 
performance when  cg is lower than some value, for example 10dB over AWGN channel, and 
5dB over Rayleigh channel. This implies no necessity for cooperation under such condition. 
Moreover, the performance of noisy CSS improves as cg  increases. It is almost equivalent to 
that of the pure case when  cg  is higher than 20dB over all listed channels, except for the 
Suzuki channel where there is always a gap between the two cases even when  cg is very high 
[Fig. 4-(d)].  
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(a) the AWGN channel                                          (b) the Rayleigh channel 

   
(c) the Shadowing channel                                          (d) the Suzuki channel 

Fig. 4. Complementary receiver operating characteristic (CROC) curves of CSS with noisy decisions 
for various average control SNRs over different channels 

3.3 Spatially Correlated Shadowing Effects 

The analysis and simulations above are based on the condition that all SUs experience 
independent channel effects. This is safely assumed for scenarios with only multipath fading 
like Rayleigh and Nakagami [32].  However,  in  practice,  there is  usually a  degree of  spatial  
correlation associated with the log-normal shadowing, which will degrade the performance of 
CSS intuitively because similar shadowing effects of different SUs may partly counter the 
collaboration gain  [12][32]. To examine the impact of correlated shadowing, we employ an 
exponential correlation model given in the literature [32]: 

( )=exp -ij ijR ba                                                            (34) 

where ijR  and ijb ( , [1, ] )i j NÎ denote the correlation factor and distance between the 
SUi and SU j , respectively; and a  is an environment-dependent parameter, with 0.1204a »  
in urban areas and 0.002a »  in suburban areas[32]. The random variable (RV) for shadowing 
without correlation in the i-th sensing or control channel can be represented as 

,dB dBi iShadow Xs=                                                       (35) 
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where iX  is an RV with standard Gaussian distribution. If the correlation is considered, the 
RV becomes 

,dB 1 dB 1 2 dB 2 dB dB

dB
1 1

i i i ii i iN N

N N

ij j ij j
j j

Shadow R X R X R X R X

R X C X

s s s s

s
= =

= + + + +

= =å å

L L

      (36) 

where ijC  denotes the element of the covariance matrix, 

( ) dB
2

,dB ,dB,ij i j ijC Cov Shadow Shadow R s= =                                      (37) 
 

The correlated shadowing effect is obviously closely bound up with the topology of the 
CRN. In the following simulation, we consider a centralized case where 10 SUs are uniformly 
distributed around a circle with FC as the centre and r as the radius. Fig. 5 shows the CROC 
curves of CSS with correlated shadowing over the Suzuki channels for various values of r. 
Both the pure and noisy cooperation cases are considered with the parameters set as 

10m = , 0dBsg = , 20dBcg = , dB 2dBs = , 0.002a » , 10N = , and 1K =  (the OR rule).  The 
spatial correlation degrades the performance of CSS under both the noisy and pure models for 
all values of r. Furthermore, this effect becomes significant when the users are dispersed over 
a smaller circle, which suggests that cooperation over a large distance is more feasible than a 
dense case confined to a small area. 

 

 
Fig. 5. Complementary receiver operating characteristic (CROC) curves of the CSS with correlated 

shadowing over the Suzuki channels for various values of r  

4. Optimization of the Cooperative Spectrum Sensing 

In this section, we investigate the optimal K in the counting rule used for the decision fusion at 
FC. Under the Bayesian criteria, we aim at minimizing the total error rate Q  denoted by 

1 f f m mK N
Min W Q W Q
£ £

Q = +                                                  (38) 

where fW  is the cost of false alarm, and 1m fW W= - corresponds to the miss detection cost. 
Both the pure and noisy CSS are studied using the general numerical search method 

according to (28)–(33) and (38), and their optimal fusion strategies (i.e., optimal values of K) 



660                                       Liu et al.: Analysis and Optimization of Cooperative Spectrum Sensing with Noisy Decision Transmission 

can be obtained. Given 10m = , 0s dBg = , 10c dBg = , 2dB dBs = , 10N = , 0.2fW = , and 
0.8mW = , Figs. 6-(a)–(d) show the error rate curves as the function of the local sensing 

threshold sil  for several typical values of K ( 1,5,10, optK K= ) over the AWGN, Rayleigh, 
Shadowing, and Suzuki channels, respectively. The optimal fusion strategy compares quite 
favorably  with  the  non-optimal  cases  over  these  channels.  As  expected,  there  is  always  a  
higher error rate in the noisy CSS because the fading/shadowing effects or noise corruption 
during decision transmission, aside from the local detection algorithms limitation, may also 
lead to error decisions at FC. Fig. 7 shows the exact optimal values of K  for different sil  
over the AWGN and Suzuki channels. Although the detailed values of optK  for specified sil  
under different scenarios are clearly not the same, their variation trends coincide well with 
each other, that is, as the detection threshold increases, the optimal value decreases. 
 

   
(a) the AWGN channel                                          (b) the Rayleigh channel 

   
(c) the Shadowing channel                                          (d) the Suzuki channel 

Fig. 6. Comparison of the total error rate in the noisy and pure CSS for different K over different 
channels 
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Fig. 7. Optimal fusion strategy (versus local detection threshold) of CSS over the AWGN and Suzuki 

channels 

5. Conclusion and Future Work 
In this paper, we have investigated the CSS scheme based on energy detection and the K out of 
N rule under an extended system model that considers an imperfect decision transmission in 
the control channels. Before the final combination, the fusion centre estimates the initial 
decisions utilizing an MEP binary detector because the received decisions may fade and be 
noise corrupted during transmission. As demonstrated by both the numerical and simulation 
results  over  several  typical  channels,  the  performance  gains  of  CSS  relative  to  the  local  
sensing under the proposed model have some degradation compared with that in the ideal case 
that assumes an error-free decision transmission. The performance gains are even insignificant 
if the average SNR in the control channel is very low. Moreover, we have also investigated the 
optimization problem under this practical model to minimize the total error rate. The results 
suggest a decreased variation trend in the optimal value of K with the increasing local 
threshold. 

Although we have studied the effect of imperfect control channels on the performance of the 
traditional K/N-rule-based CSS, more studies must be conducted to develop efficient CSS 
schemes in such an environment [33]. For example, designing a joint local decision recovery 
and final decision fusion scheme is a helpful tool. In addition, characterizing the performance 
of CSS schemes under different spatial distributions of cooperative users and different 
correlation models of shadowing effects is of great importance. Other interesting issues for 
future research include extending the uncertainty models of the control channels by error 
probability, which can generally accommodate any distorting effects, and also, developing 
some online algorithms [34] for maximizing the throughput of CRN when the sensing 
outcome is not always reliable. 
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