• Title/Summary/Keyword: Noise-reduced

Search Result 1,745, Processing Time 0.025 seconds

A Performance Improvement of CR-MMA Adaptive Equalization Algorithm using Adaptive Modulus and Adaptive Stepsize (Adaptive Modulus와 Adaptive Stepsize를 이용한 CR-MMA 적응 등화 알고리즘의 성능 개선)

  • Lim, Seung-Gag
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.5
    • /
    • pp.107-113
    • /
    • 2019
  • This paper proposes the Hybrid-CRMMA adaptive equalization algorithm that is possible to improves the performance of CR-MMA based on adaptive modulus and adaptive stepsize. The 16-QAM nonconstant modulus signal is reduced to 4-QAM constant modulus signal, and the error signal were obtained based on the fixed statistic modulus of transmitted signal. It is possible to improving the currently MMA adaptive equalization performance. The proposed Hybrid-CRMMA composed of adaptive modulus which is propotional to the power of equalizer output and adaptive stepsize which is function of the nonlinearties of error signal, and its improved equalization performance were confirmed by computer simulation. For this purpose, the output signal constellation, the residual isi and maximum distortion and MSE that is for the convergence characteristics, the SER that is meaning the robustness of external noise of algorithm were used. As a result of computer simulation, it was confirmed that the proposed Hybrid-CRMMA has more superior performance in every index compared to currently CR-MMA.

A novel method to improve SNR of the spectrum-sliced incoherent light source using the four-wave mixing in a dispersion-shifted fiber (4광파 혼합 현상을 이용한 스펙트럼 저미어진 광섬유 증폭 광원의 SNR 개선 방법)

  • 한정희;고준원;이재승;신상영
    • Korean Journal of Optics and Photonics
    • /
    • v.9 no.1
    • /
    • pp.15-19
    • /
    • 1998
  • We have present an all-optical technique to significantly reduce the dispersion penalty of a spectrum-sliced channel in high-speed and long-distance transmissions. We have reduced the necessary optical bandwidth for the 2.5 Gb/s incoherent light transmission down to 0.1 nm by expanding the optical bandwidth of a received signal. The optical bandwidth expansion was realized using the intra-channel fiber four-wave mixing at the receiver resulting in an improvement of th signal-to-noise ratio of the received light channel. We have successfully demonstrated the transmission of a 2.5 Gb/s NRZ signal with the 0.1 nm bandwidth over a 300 km dispersion-shifted fiber. An error floor occurs at $1{\times}10^{-5}$ BER without the optical bandwidth expansion. With the optical bandwidth expansion, however, the error floor decreases to less than $1{\times}10^{-10}$. The transmission penalty was less than 0.5 dB at $1{\times}10^{-10}$ BER. To our knowledge, the optical bandwidth of 0.1 nm used in our experiment is the narrowest optical bandwidth reported so far.

  • PDF

A Performance Evaluation of the CCA Adaptive Equalization Algorithm by Step Size (스텝 크기에 의한 CCA 적응 등화 알고리즘의 성능 평가)

  • Lim, Seung-Gag
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.3
    • /
    • pp.67-72
    • /
    • 2019
  • This paper evaluates the performance of CCA (Compact Constellation Algorithm) adaptive equalization algorithm by varying the step size for minimization of the distortion effect in the communication channel. The CCA combines the conventional DDA and RCA algorithm, it uses the constant modulus of the transmission signal and the considering the output of decision device by the power of compact slice weighting value in order to improving the initial convergence characteristics and the equalization noise by misadjustment in the steady state. In this process, the compact slice weight values were fixed, and the performance of CCA adaptive equalization algorithm was evaluated by the varing the three values of step size for adaptation. As a result of computer simulation, it shows that the smaller step size gives slow convergence speed, but gives excellent performance after at steady state. Especially in SER performance, the small step size gives more robustness that large values.

Improvement of Detection Performance of a Ground Radar in the Weather Clutter Using Radar-Received-Signal Analysis (레이다 수신 신호 분석을 이용한 기상 클러터 환경 내 지상 레이다 탐지성능 개선)

  • Oh, Hyun-Seok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.1
    • /
    • pp.79-87
    • /
    • 2019
  • Radar detection range is decreased with an increase in the noise levels and detection thresholds in adaptive CFAR of a radar signal processor to the weather clutter reflection signal in the rain. When a high-velocity plot is generated in weather clutter, what are detected are not targets but false plots. Detection opportunity is reduced by radar time resource consumption from additional confirmations regarding the false plots. In this paper, the received signals are saved using a radar-received signal storage device. Based on the analysis of the received signals from weather clutter, the influence of the rainfall reflection has been mitigated by front-end attenuation of the signal processor. The improvement in the detection performance is verified through received signal and simulation results.

Energy harvesting from piezoelectric strips attached to systems under random vibrations

  • Trentadue, Francesco;Quaranta, Giuseppe;Maruccio, Claudio;Marano, Giuseppe C.
    • Smart Structures and Systems
    • /
    • v.24 no.3
    • /
    • pp.333-343
    • /
    • 2019
  • The possibility of adopting vibration-powered wireless nodes has been largely investigated in the last years. Among the available technologies based on the piezoelectric effect, the most common ones consist of a vibrating beam covered by electroactive layers. Another energy harvesting strategy is based on the use of piezoelectric strips attached to a hosting structure subjected to dynamic loads. The hosting structure, for example, can be the system to be equipped with wireless nodes. Such strategy has received few attentions so far and no analytical studies have been presented yet. Hence, the original contribution of the present paper is concerned with the development of analytical solutions for the electrodynamic analysis and design of piezoelectric polymeric strips attached to relatively large linear elastic structural systems subjected to random vibrations at the base. Specifically, it is assumed that the dynamics of the hosting structure is dominated by the fundamental vibration mode only, and thus it is reduced to a linear elastic single-degree-of-freedom system. On the other hand, the random excitation at the base of the hosting structure is simulated by filtering a white Gaussian noise through a linear second-order filter. The electromechanical force exerted by the polymeric strip is negligible compared with other forces generated by the large hosting structure to which it is attached. By assuming a simplified electrical interface, useful new exact analytical expressions are derived to assess the generated electric power and the integrity of the harvester as well as to facilitate its optimum design.

Range estimation of underwater moving source using frequency-difference-of-arrival of multipath signals (다중 경로 신호의 도달 주파수 차를 이용한 수중 이동 음원의 거리 추정)

  • Park, Woong-Jin;Kim, Ki-Man;Son, Yoon-Jun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.2
    • /
    • pp.154-159
    • /
    • 2019
  • When measuring the radiating noise of an underwater moving source, the range information between the acoustic source and the receiver is an important evaluation factor, and the measurement standards such as a receiver position, a moving source depth and a speed are set. Although there is a method of using the cross correlation as a method of finding the range of the underwater moving source, this method requires a time synchronization process. In this paper, we proposed the method to estimate the range by comparing the Doppler frequency difference of the theoretically calculated multipath signal with the Doppler frequency difference of the multipath signal estimated from the received signal. The proposed method does not require a separate time synchronization process. Simulations were performed to verify the performance, and the ranging error of the proposed method reduced by about 95 % than that of the conventional method.

A Performance Evaluation of QE-MMA Adaptive Equalization Algorithm by Quantizer Bit Number (양자화기 비트수에 의한 QE-MMA 적응 등화 알고리즘 성능 평가)

  • Lim, Seung-Gag
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.1
    • /
    • pp.57-62
    • /
    • 2019
  • This paper evaluates the QE-MMA (Quantized Error-MMA) adaptive equalization algorithm by the number of quantizer in order to compensates the intersymbol interference due to channel in the transmission of high spectral efficient nonconstant modulus signal. In the adaptive equalizer, the error signal is needed for the updating the tap coefficient, the QE-MMA uses the polarity of error signal and correlation multiplier that condered nonlinear finite bit power-of-two quantizing component in order to convinience of H/W implementation. The different adaptive equalization performance were obtained by the number of quantizer, these performance were evaluated by the computer simulation. For this, the equalizer output signal constellation, residual isi, maximum distortion, MSE, SER were applied as a performance index. As a result of computer simulation, it improved equalization performance and reduced equalization noise were obtained in the steady state by using large quantizer bit numbers, but gives slow in convergence speed for reaching steady state.

Vibration Reduction of Cantilever using Passive Piezoelectric Shunt (수동형 압전션트를 이용한 외팔보의 진동저감 연구)

  • Yun, Yangsoo;Kim, Jaechul;Noh, Heemin
    • Journal of The Korean Society For Urban Railway
    • /
    • v.6 no.4
    • /
    • pp.417-426
    • /
    • 2018
  • Piezoelectric shunt is an electric type damper capable of reducing the vibration of the structure. Vibration generated at the natural frequency of the structure are converted into electrical energy through the piezoelectric material attached to the structure. Electric energy can be dissipated by thermal energy using piezoelectric shunt composed of inductor and resistance to reduce vibration. In this paper, the equation for the optimum inductance required to reduce the vibration of the cantilever beam was examined and the vibration of the aluminum cantilever was reduced by using finite element analysis and experiments. In the finite element analysis, the mode shape and the strain energy distribution were calculated to examine the mounting position, and the vibration reduction of the cantilever was calculated by adjusting the inductance and resistance circuit values. In addition, in the experiment, a variable inductor module was used to reduce the vibration occurring at a specific frequency of the cantilever. Finally, based on the results of the finite element analysis and the experiment, it was verified that the piezoelectric shunt can effectively reduce the vibration of the cantilever.

Iterative Low Rank Approximation for Image Denoising (영상 잡음 제거를 위한 반복적 저 계수 근사)

  • Kim, Seehyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.10
    • /
    • pp.1317-1322
    • /
    • 2021
  • Nonlocal similarity of natural images leads to the fact that a patch matrix whose columns are similar patches of the reference patch has a low rank. Images corrupted by additive white Gaussian noises (AWGN) make their patch matrices to have a higher rank. The noise in the image can be reduced by obtaining low rank approximation of the patch matrices. In this paper, an image denoising algorithm is proposed, which first constructs the patch matrices by combining the similar patches of each reference patch, which is a part of the noisy image. For each patch matrix, the proposed algorithm calculates its low rank approximate, and then recovers the original image by aggregating the low rank estimates. The simulation results using widely accepted test images show that the proposed denoising algorithm outperforms four recent methods.

Development of Position Sensor Detection Circuit using Hall Effect Sensor (Hall Effect Sensor를 이용한 위치센서 검출회로개발)

  • Jeong, Sungin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.2
    • /
    • pp.143-149
    • /
    • 2021
  • BLDC motors are getting better performance due to the improvement of material technology including high performance of permanent magnets, advancement of driving IC technology with high integration and high functionality, and improvement of assembly technology such as high point ratio. While having the advantage of such a square wave driven BLDC motor, interest in the design and development of a square wave driven BLDC permanent magnet motor and development of a position detection circuit and driver is increasing in order to more meet the needs of users. However, in spite of the cost and functional advantages due to reduced efficiency, switching loss and vibration, noise, etc., the application is somewhat limited. Therefore, in this paper, we study a position detection circuit that generates a sinusoidal signal in proportion to the magnetic flux of a BLDC motor rotor using a Hall Effect Sensor that generates a sinusoidal wave to increase the efficiency of the motor, reduce ripple, and drive a sinusoidal current with excellent speed and torque characteristics.