• Title/Summary/Keyword: Noise-invariant Feature Vector

Search Result 10, Processing Time 0.112 seconds

Robust 2-D Object Recognition Using Bispectrum and LVQ Neural Classifier

  • HanSoowhan;woon, Woo-Young
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.255-262
    • /
    • 1998
  • This paper presents a translation, rotation and scale invariant methodology for the recognition of closed planar shape images using the bispectrum of a contour sequence and the learning vector quantization(LVQ) neural classifier. The contour sequences obtained from the closed planar images represent the Euclidean distance between the centroid and all boundary pixels of the shape, and are related to the overall shape of the images. The higher order spectra based on third order cumulants is applied to tihs contour sample to extract fifteen bispectral feature vectors for each planar image. There feature vector, which are invariant to shape translation, rotation and scale transformation, can be used to represent two0dimensional planar images and are fed into a neural network classifier. The LVQ architecture is chosen as a neural classifier because the network is easy and fast to train, the structure is relatively simple. The experimental recognition processes with eight different hapes of aircraft images are presented to illustrate the high performance of this proposed method even the target images are significantly corrupted by noise.

  • PDF

Object Feature Extraction Using Double Rearrangement of the Corner Region

  • Lee, Ji-Min;An, Young-Eun
    • Journal of Integrative Natural Science
    • /
    • v.12 no.4
    • /
    • pp.122-126
    • /
    • 2019
  • In this paper, we propose a simple and efficient retrieval technique using the feature value of the corner region, which is one of the shape information attributes of images. The proposed algorithm extracts the edges and corner points of the image and rearranges the feature values of the corner regions doubly, and then measures the similarity with the image in the database using the correlation of these feature values as the feature vector. The proposed algorithm is confirmed to be more robust to rotation and size change than the conventional image retrieval method using the corner point.

A partially occluded object recognition technique using a probabilistic analysis in the feature space (특징 공간상에서 의 확률적 해석에 기반한 부분 인식 기법에 관한 연구)

  • 박보건;이경무;이상욱;이진학
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.11A
    • /
    • pp.1946-1956
    • /
    • 2001
  • In this paper, we propose a novel 2-D partial matching algorithm based on model-based stochastic analysis of feature correspondences in a relation vector space, which is quite robust to shape variations as well as invariant to geometric transformations. We represent an object using the ARG (Attributed Relational Graph) model with features of a set of relation vectors. In addition, we statistically model the partial occlusion or noise as the distortion of the relation vector distribution in the relation vector space. Our partial matching algorithm consists of two-phases. First, a finite number of candidate sets areselected by using logical constraint embedding local and structural consistency Second, the feature loss detection is done iteratively by error detection and voting scheme thorough the error analysis of relation vector space. Experimental results on real images demonstrate that the proposed algorithm is quite robust to noise and localize target objects correctly even inseverely noisy and occluded scenes.

  • PDF

A TRUS Prostate Segmentation using Gabor Texture Features and Snake-like Contour

  • Kim, Sung Gyun;Seo, Yeong Geon
    • Journal of Information Processing Systems
    • /
    • v.9 no.1
    • /
    • pp.103-116
    • /
    • 2013
  • Prostate cancer is one of the most frequent cancers in men and is a major cause of mortality in the most of countries. In many diagnostic and treatment procedures for prostate disease accurate detection of prostate boundaries in transrectal ultrasound(TRUS) images is required. This is a challenging and difficult task due to weak prostate boundaries, speckle noise and the short range of gray levels. In this paper a method for automatic prostate segmentation in TRUS images using Gabor feature extraction and snake-like contour is presented. This method involves preprocessing, extracting Gabor feature, training, and prostate segmentation. The speckle reduction for preprocessing step has been achieved by using stick filter and top-hat transform has been implemented for smoothing the contour. A Gabor filter bank for extraction of rotation-invariant texture features has been implemented. A support vector machine(SVM) for training step has been used to get each feature of prostate and nonprostate. Finally, the boundary of prostate is extracted by the snake-like contour algorithm. A number of experiments are conducted to validate this method and results showed that this new algorithm extracted the prostate boundary with less than 10.2% of the accuracy which is relative to boundary provided manually by experts.

Detecting the Prostate Contour in TRUS Image using Support Vector Machine and Rotation-invariant Textures (SVM과 회전 불변 텍스처 특징을 이용한 TRUS 영상의 전립선 윤곽선 검출)

  • Park, Jae Heung;Seo, Yeong Geon
    • Journal of Digital Contents Society
    • /
    • v.15 no.6
    • /
    • pp.675-682
    • /
    • 2014
  • Prostate is only an organ of men. To diagnose the disease of the prostate, generally transrectal ultrasound(TRUS) images are used. Detecting its boundary is a challenging and difficult task due to weak prostate boundaries, speckle noise and the short range of gray levels. In this paper a method for automatic prostate segmentation in TRUS images using Support Vector Machine(SVM) is presented. This method involves preprocessing, extracting Gabor feature, training, and prostate segmentation. The speckle reduction for preprocessing step has been achieved by using stick filter and top-hat transform has been implemented for smoothing. Gabor filter bank for extraction of rotation-invariant texture features has been implemented. SVM for training step has been used to get each feature of prostate and nonprostate. Finally, the boundary of prostate is extracted. A number of experiments are conducted to validate this method and results shows that the proposed algorithm extracted the prostate boundary with less than 10% relative to boundary provided manually by doctors.

Image Feature Representation Using Code Vectors for Retrieval

  • Nishat, Ahmad;Zhao, Hui;Park, Jong-An;Park, Seung-Jin;Yang, Won-II
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.3
    • /
    • pp.122-130
    • /
    • 2009
  • The paper presents an algorithm which uses code vectors to represent comer geometry information for searching the similar images from a database. The comers have been extracted by finding the intersections of the detected lines found using Hough transform. Taking the comer as the center coordinate, the angles of the intersecting lines are determined and are represented using code vectors. A code book has been used to code each comer geometry information and indexes to the code book are generated. For similarity measurement, the histogram of the code book indexes is used. This result in a significant small size feature matrix compared to the algorithms using color features. Experimental results show that use of code vectors is computationally efficient in similarity measurement and the comers being noise invariant produce good results in noisy environments.

  • PDF

An Improved 2-D Moment Algorithm for Pattern Classification

  • Yoon, myoung-Young
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.4 no.2
    • /
    • pp.1-6
    • /
    • 1999
  • We propose a new algorithm for pattern classification by extracting feature vectors based on Gibbs distributions which are well suited for representing the characteristic of an images. The extracted feature vectors are comprised of 2-D moments which are invariant under translation rotation, and scale of the image less sensitive to noise. This implementation contains two puts: feature extraction and pattern classification First of all, we extract feature vector which consists of an improved 2-D moments on the basis of estimated Gibbs distribution Next, in the classification phase the minimization of the discrimination cost function for a specific pattern determines the corresponding template pattern. In order to evaluate the performance of the proposed scheme, classification experiments with training document sets of characters have been carried out on SUN ULTRA 10 Workstation Experiment results reveal that the proposed scheme had high classification rate over 98%.

  • PDF

Two-wheeler Detection using the Local Uniform Projection Vector based on Curvature Feature (이진 단일 패턴과 곡률의 투영벡터를 이용한 이륜차 검출)

  • Lee, Yeunghak;Kim, Taesun;Shim, Jaechang
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.11
    • /
    • pp.1302-1312
    • /
    • 2015
  • Recent research has been devoted and focused on detecting pedestrian and vehicle in intelligent vehicles except for the vulnerable road user(VRUS). In this paper suggest a new projection method which has robustness for rotation invariant and reducing dimensionality for each cell from original image to detect two-wheeler. We applied new weighting values which are calculated by maximum curvature containing very important object shape features and uniform local binary pattern to remove the noise. This paper considered the Adaboost algorithm to make a strong classification from weak classification. Experiment results show that the new approach gives higher detection accuracy than of the conventional method.

A FAST TEMPLATE MATCHING METHOD USING VECTOR SUMMATION OF SUBIMAGE PROJECTION

  • Kim, Whoi-Yul;Park, Yong-Sup
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1999.06a
    • /
    • pp.171-176
    • /
    • 1999
  • Template matching is one of the most often used techniques for machine vision applications to find a template of size M$\times$M or subimage in a scene image of size N$\times$N. Most template matching methods, however, require pixel operations between the template and the image under analysis resulting in high computational cost of O(M2N2). So in this thesis, we present a two stage template matching method. In the first stage, we use a novel low cost feature whose complexity is approaching O(N2) to select matching candidates. In the second stage, we use conventional template matching method to find out the exact matching point. We compare the result with other methods in terms of complexity, efficiency and performance. Proposed method was proved to have constant time complexity and to be quite invariant to noise.

Nearest-Neighbors Based Weighted Method for the BOVW Applied to Image Classification

  • Xu, Mengxi;Sun, Quansen;Lu, Yingshu;Shen, Chenming
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1877-1885
    • /
    • 2015
  • This paper presents a new Nearest-Neighbors based weighted representation for images and weighted K-Nearest-Neighbors (WKNN) classifier to improve the precision of image classification using the Bag of Visual Words (BOVW) based models. Scale-invariant feature transform (SIFT) features are firstly extracted from images. Then, the K-means++ algorithm is adopted in place of the conventional K-means algorithm to generate a more effective visual dictionary. Furthermore, the histogram of visual words becomes more expressive by utilizing the proposed weighted vector quantization (WVQ). Finally, WKNN classifier is applied to enhance the properties of the classification task between images in which similar levels of background noise are present. Average precision and absolute change degree are calculated to assess the classification performance and the stability of K-means++ algorithm, respectively. Experimental results on three diverse datasets: Caltech-101, Caltech-256 and PASCAL VOC 2011 show that the proposed WVQ method and WKNN method further improve the performance of classification.